黄石市生态环境局

黄环审函〔2022〕1号

黄石市生态环境局 关于华新水泥(阳新)有限公司水泥窑协同 综合利用替代燃料项目环境影响评价 报告表的批复

华新水泥(阳新)有限公司:

《关于申请〈华新水泥(阳新)有限公司水泥窑协同综合利用替代燃料项目环境影响评价报告表〉(以下简称《报告表》)批复的请示》收悉,经研究批复如下:

一、华新水泥(阳新)有限公司水泥密协同综合利用替代燃料项目为技改项目(登记备案项目代码2112-420206-89-02-629003),位于湖北省黄石市阳新县韦源口华新水泥(阳新)有限公司现有厂区内,利用现有的华新水泥(阳新)有限公司生产线(5000t/d(K1一号窑)及4800t/d(K2二号窑)以及水泥密协同处置生活垃圾预处理可燃物RDF的入窑系统,处置一般固体废物10万吨/年。项目总投资200万元,环保投资10万元。

在全面落实《报告表》提出的各项生态环境保护措施后,

项目建设对环境的不利环境影响可以得到缓解和控制,主要污染物排放能够满足相应排放标准要求。我局原则同意报告书中所列的项目性质、规模、地点、采用的生产工艺及环境保护对策措施。

- 二、在项目的运行管理中, 你公司须着重做好以下工作:
- (一)严格落实大气污染防治措施。水泥窑窑尾废气依托原有两条窑线的废气处理措施"复合脱硫+SNCR脱硝装置+布袋除尘"处理后经80m排气筒达标排放,排放标准需满足《水泥工业大气污染物排放标准》(GB4915-2013)表2及《水泥窑协同处置固体废物污染控制标准》(GB30485-2013)表1限值要求。项目厂界氨、颗粒物无组织监控值须满足《水泥工业大气污染物排放标准》(GB4915-2013)表3限值要求。
- (二)严格落实水污染防治措施。项目新增生活废水经 厂区处理后回用,不外排。
- (三)优化厂区平面布置,优先选用低噪设备,合理布置高噪设备,对高噪设备采取隔音、消声等有效降噪措施,厂界噪声应满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类限值要求。
- (四)项目应按照"减量化、资源化、无害化"原则, 落实《报告表》提出的各类固体废物的分类收集、处置和利 用措施,暂存场所须满足相关标准要求。
- (五)切实落实地下水和土壤污染防治措施。按照"源头控制、分区防治、污染监控、应急响应"的原则进行地下水污染防治。建立完善的地下水和土壤临测制度、全理设置

地下水和土壤监测点,严格落实地下水和土壤监测计划。

- (六)落实环境风险事故防范措施。应按照《报告表》要求,进一步健全环境管理和环境风险防范制度,编制环境风险应急预案并备案。与周边企业、园区及各相关管理部门形成区域联控(联动)机制,定期开展环境风险应急培训和演练,有效防范因污染物事故排放或安全生产事故可能引发的环境风险。
 - (七)一般固体废物运输应采用专用的密闭运输车辆,严禁洒漏。合理确定运输路线,运输线路应尽量远离居民点。
- (八)严格落实《报告表》提出的污染物排放总量控制 要求。项目投运后,应按计划做好环境空气、土壤、地下水 等环境质量监测内容,将监测开展情况和结果及时公开并报 生态环境部门备案,重点关注二噁英等特征污染物环境影响。
- 三、在项目运营过程中,应建立畅通的公众参与平台, 及时解决公众提出的环境问题,满足公众合理的环境保护要求。定期发布企业环境信息,主动接受社会监督。

四、项目建设必须严格执行环境保护"三同时"制度,落实各项环境保护制度。项目建成后,须按相关法规要求开展竣工环境保护验收。建设项目发生实际排污行为之前,应当按照相关法律法规以及排污许可证申请与核发技术规范要求变更排污许可证。

五、本批复下达之日起5年内有效。项目的环境影响评价文件经批准后,如项目的性质、规模、地点、采用的生产工艺或防治污染,防止生意破坏的措施发生重大变动的,建

设单位应当重新报批本项目的环境影响评价文件。

六、黄石市生态环境综合执法支队负责项目的日常环境 保护监督检查、执法工作

七、你公司应在收到本批复后20个工作日内,将批准后 的《报告表》送至黄石市生态环境综合执法支队,并按规定 接受各级生态环境行政主管部门的监督检查。

抄送: 黄石市生态环境保护综合执法支队、中南安全环境技术 研究院股份有限公司

排污许可证

证书编号: 914202227570330315001P

无效。

单位名称:华新水泥(阳新)有限公司

注册地址:阳新县韦源口镇华新路1号

法定代表人:梅向福

生产经营场所地址:湖北省黄石市阳新县韦源口镇华新路1号

行业类别:水泥制造,货运港口,固体废物治理,环境卫生管理,

统一社会信用代码: 914202227570330315

有效期限: 自2022年11月10日至2027年11月09日止

发证机关: (盖章)黄石市生态环境局

发证日期: 2022年11月10日

仅供一般固废项目和污泥协同

处置项目验收使用,再次复印

20.00		危	险废物	九人(1	出) 居	F统计	台账			
单位名称	入库时间	出库时间	废物名称			度物来源		数章(分斤)	期号: 入出仓库	HYXJH-IOOI 经办人
肠杆鱼引	2022.6.6		院进	Hwos		松黄油湖		1030	241111374	是此一节时间
历新九司	2022.6.7		国在 海点	HWOR		一次,应该		914		1 1 To 1
西新山司	302.6.13		压油	House		芝田字, 河	2002	90		超冰 下槽
局折归司	302.6.4		THEME	HUNE	There	大河湖	- DAT	179	1	老公儿一百
的新公司	2007: 6.20		压油	Hubbs	政体	和風魔	Jost	372	1	表述生 香味
to then	202.6.29		意的	4.608	游布	200	2002	77	-	多分类海豚
	1			-		-				1
									+	1
								-	+	1
									-	
				-						1
+	1								-	
										1
								1		
- 1-										

华新水泥(周旬)有限公司 HUAXIN CEMENT(YANGXIN)CO.,LTD

危险废物入(出)库统计台账

编号: HYXJH-J001

単位名称 を新なる る新なる の新なる の新なる	入库时间 201.7.15 202.7.18 202.7.16 202.7.16 202.7.16	出库时间	皮物名称 安排 空排 空排 空排	度物类別 HWG HWG HWLg HWLg HWLg	四分	度物来源 十六·中加 一些产 斯子度 水泥程 不足度	2001 2001	公斤 71.7 92-5 みS2 37 2 38.1	入出仓库	

中型名称	1		险废物						编号:	HYXJH-1001
	入库时间	出库时间	度物名称			废物来源	包装形式	1 2535 1	入出仓库	
The state of	302.8.1		推动	Hugh	3626	STORY.	2006	593	1	起4.90日
The state of	202.8.1		100000	HOUR	Feith	FIRE	Soul	345	1	Both The
	202.8.		Ph at	2 Sounts	37260	3中原料板		332	-	Hete Tomp
- 4	Jan 2 20		JAS-int	HW08	3000	3四十十	3007	545	1	大大 本
							-	1	-	1
							-	1	1	1
					-		1	1	1	1
							1	1	1	1
							1	1	-	1
				_		-	-	+	-	1
						-	1	1	-	1
	-						-	-		1
								1	N.	1

岩断水泥(即断)有配公司 HUAXIN CEMENT (YANGXIN) CO.110

危险废物入(出)库统计台账

单位名称 西斯及司 西斯及司 西斯及司	入库时间 2029.1 2027.9.5 2022.9.5 2022.9.16 2022.9.27	出库时间	度物名称 序油 房油 房油 房油	度物类别 HWOS HWOS HWOS HWOS HWOS	废物形态 過休 過休 過休	211-1365	包装形式 3のU 3のU 3のU 3のU	数量 公斤 289 418 281 475 910	入出仓库	好水 不可是 是 不

第一部	分危险废物移出信,	息 (由移出人填	写)							
单位名	称:华新水泥(阳新	新)有限公司			应急联系电话:13	3872076921	-			
单位地	址:阳新县韦源口镇	真华新路1号								
经办人	. : 丁文	联系电话:13	872076921		交付时间: 2022年03月16日 09时41分14秒					
序号	废物名称	废物代码	危险特性	形态	有害成分名称	包装方式	包装数量	移出量 (吨)		
1	废活性炭	900-039-49	毒 性	S固态	过滤吸附有毒气体	编织袋	4	2.4200		
第二部	分危险废物运输信。	息 (由承运人填	写)	•			•			
单位名	称:武穴市陆顺汽车	F运输有限公司	营运证件号: 危字	421182910	000					
单位地	址:武穴市永宁大道	道西特1 号			联系电话:18872707772					
驾驶员	:吴天桂				联系电话:18995	733877				
运输工	.具:汽车				牌号:鄂J45988					
运输起	点:阳新县韦源口镇	真华新路1号			实际起运时间:2022年03月16日 09时41分38秒					
经由地	,:蕲州									
运输终	点:黄冈武穴市田镇	真上郭村			实际到达时间:2022年03月16日 10时39分21秒					
第三部	分 危险废物接受信,	息 (由接受人填	写)							
单位名	称:华新环境工程	(武穴) 有限公司	<u> </u>		危险废物经营许可	证编号:S42	2-11-82-007	77		
单位地	址:黄冈武穴市田镇	真上郭村			•					
经办人	:卢佳	联系电话:18	772529703		接受时间: 2022年	F03月16日 1	L4时13分06	秒 秒		
序号	废物名称	废物代码	是否存在重	重大差异	接受人处理意见	拟利用处	置方式	接受量 (吨)		
1	废活性炭	900-039-49	无	;	接收	C1水泥窑		2.4000		

第一部	3分 危险废物移出信	息 (由移出人墳	写)							
单位名	·称:华新水泥(阳	新)有限公司			应急联系电话:1	3872076921				
单位地	址:阳新县韦源口	镇华新路1号			1					
经办人	、: 丁文	联系电话:13	872076921		交付时间: 2022年03月24日 11时43分38秒					
序号	废物名称	废物代码	危险特性	形态	有害成分名称	包装方式	包装数量	移出量	(吨)	
1	润滑油	900-249-08	毒性,易燃性	L液态	基础油、添加剂、 有机酸、碳化物、 胶化物、金属屑	圆桶	70	13.52	200	
第二部	3分 危险废物运输信	息(由承运人填	写)							
单位名	術:湖北龙帝良运	运输有限公司			营运证件号:鄂交运管许可危字 421002910006					
单位地	址:湖北省荆州市	沙市区北湖路16	号		联系电话:18672	2282958				
驾驶员	· :李杨				联系电话:18972	2321959				
运输工					牌号: 鄂D16033					
运输起		 镇华新路1号			实际起运时间:2022年03月24日 11时46分47秒					
经由地	1:蕲嘉高速,孝洪	 高速,G50								
运输终	· ·点:开发区六号路	 8号			实际到达时间: 2022年03月24日 17时37分03秒					
第三部		息(由接受人填	[写)							
单位名		 保工程有限公司			危险废物经营许可	J证编号:JZJ4	42-10-71-00	003		
单位地	址:开发区六号路	 8号			1					
经办人	 、:梅燕	 联系电话:18	627207932		接受时间: 2022年	年03月24日 1	.7时50分44	 秒		
序号		废物代码	是否存在重	 重大差异	接受人处理意见	拟利用处	 :置方式	接受量	(吨)	
1	润滑油	900-249-08	无	,	接收	R9废油再提加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加		13.52	200	

								11 11 11 11 11 11	
第一部	3分 危险废物移出信	息 (由移出人墳	[写)						
单位名	称:华新水泥(阳	新)有限公司			应急联系电话:1	3872076921			
单位地	址:阳新县韦源口的	镇华新路1号			•				
经办人	、: 丁文	联系电话:13	872076921		交付时间: 2022年05月19日 12时49分57秒				
序号	废物名称	废物代码	危险特性	形态	有害成分名称	包装方式	包装数量	移出量 (吨)	
1	废油桶	900-249-08	毒性,易燃性	S固态	基础油、添加剂、 有机酸、碳化物、 胶化物、金属屑	圆桶	58	2.7200	
第二音	3分 危险废物运输信	息(由承运人填	[写)						
单位名	·称:湖北龙帝良运	运输有限公司			营运证件号:鄂交运管许可危字 421002910006				
单位地	3址:湖北省荆州市	沙市区北湖路16	·号		联系电话:18672	2282958			
驾驶员	1: 李杨				联系电话:18972	2321959			
运输工					牌号: 鄂D16033				
运输起	2点:阳新县韦源口6	真华新路1号			实际起运时间:2022年05月19日 12时52分09秒				
经由地					1				
运输约	· ·点:开发区六号路8	 3号			实际到达时间: 2022年05月19日 21时39分07秒				
第三音		息(由接受人填	[写)						
单位名		 保工程有限公司			危险废物经营许可	 「证编号:JZJ4	42-10-71-00	003	
单位地	址:开发区六号路8	 3号			I				
经办人	 、:梅燕	 联系电话:18	627207932		接受时间: 2022年	年05月20日 C		 秒	
序号		废物代码	是否存在重	 重大差异	接受人处理意见	拟利用处	 :置方式	接受量 (吨)	
1		900-249-08	无	;		R9废油再提加 油的画		2.7200	

第一部	邓分 危险废物移出信	息 (由移出人填	[写)						
单位名	A称:华新水泥(阳部	新)有限公司			应急联系电话:1	3872076921			
单位地	地: 阳新县韦源口镇	真华新路1号							
经办人	、: 丁文	联系电话:13	872076921		交付时间: 2022年	年10月11日 1	.4时09分53	秒 秒	
序号	废物名称	废物代码	危险特性	形态	有害成分名称	包装方式	包装数量	移出量 (吨)	
1	实验室废液	900-047-49	腐蚀性,反应性,毒性,易燃性	L液态	酸碱中和夜	圆桶	25	0.6400	
第二部	邓分 危险废物运输信	息 (由承运人填	[写)						
单位名称:武穴市陆顺汽车运输有限公司 营运证件号:危字421182910000									
单位均	址:武穴市永宁大ì	道西特1号			联系电话:18872	2707772			
驾驶员	· 吴天桂				联系电话:18995	5733877			
运输工					牌号:鄂J45988				
运输起	2点:阳新县韦源口镇	真华新路1号			实际起运时间:2022年10月11日 14时10分12秒				
经由地	也:蕲州								
运输约	· · · · · · · · · · · · · · · · · · ·	真上郭村			实际到达时间:2	022年10月11	日 15时06	分05秒	
第三音	邓分 危险废物接受信	息(由接受人填	[写]						
单位名	 公称:华新环境工程	(武穴) 有限公	司		危险废物经营许可	 「证编号:S42	2-11-82-007	77	
单位均	地:黄冈武穴市田镇	 真上郭村			1				
经办人	、: 卢佳	联系电话:18	772529703		接受时间: 2022年	年10月11日 1		—————————————————————————————————————	
序号	废物名称	废物代码	是否存在重	重大差异	接受人处理意见	拟利用处	置方式	接受量 (吨)	
1	实验室废液	900-047-49	无		接收	 C1水泥窑	 ;共处置	0.6200	

危险废物处置服务合同

甲方: 华新水泥 (阳新) 有限公司 (以下简称甲方)

地址: 湖北省黄石市阳新县韦源口镇华新路1号

乙方: 华新环境工程(武穴)有限公司(以下简称乙方)

地址: 湖北省武穴市田镇上郭村

根据《中华人民共和国固体废物污染环境防治法》。甲方作为危险废物的产生单位委托乙方对其产生的危险废物进行安全、环保、无害化处置,达到保护资源环境、提高社会效益的目的。本着符合环境保护规定要求、平等互利的原则,经双方友好协商,达成协议如下:

第一条 名词和术语

- 危险废物:是指列入《国家危险废物名录》或者根据国家规定的危险废物鉴别标准和鉴别方法认定的 具有危险特性的废物。
- 2、处置:是指危险废物经营单位将危险废物焚烧、煅烧、熔融、烧结、裂解、中和、消毒蒸馏、萃取、沉淀、过滤、拆解以及用其他改变危险废物物理、化学、生物特性的方法,达到减少危险废物数量、缩小危险废物体积、减少或者消除其危险成分的活动,或者将危险废物最终置于符合环境保护规定要求的场所或者设施并不再回取的活动。

第二条 合作内容

- 1、合同有效期: 2022 年 2 月 10 日起至 2023 年 12 月 31 日止
- 2、本合同约定的危险废物相关信息如下:

序号	废物名称	废物 类别	废物代码	预估量(吨)	处置单价 (元/吨)	包装形式	备注
1	废活性炭	HW49	900-039-49	0.5	2500	袋装	
2	实验室废液	HW49	900-047-49	1	9000	桶装	

注: 处置单价含6%增值税,不含运输费。如遇国家税率调整,该含税处置价格保持不变。

- (1) 价格更新:在合同有效期内,如遇乙方处置成本发生非乙方可控的大幅增长,乙方可提前30天书面通知甲方,双方另行协商处置价格。若无法协商一致,乙方有权单方解除合同,且不承担违约责任。
- (2) 计量方式:数量采用乙方地磅计量。地磅产权单位按国家要求定期检查地磅,确保计量准确。地磅合理磅差率为 ±3 %,双方对合理磅差率内的误差无异议;磅差率超过±3 %,任一方提出异议的应在危险废物交接时提出。由双方会同计量检测部门对该计量设施进行检测,若确属地磅产权单位原因,以检测结果为依据计算。若未在交接时提出异议的,视为对该批次交货量无异议。

3、包装: 指按照《中华人民共和国国家环境保护标准-危险废物收集、贮存、运输技术规范》CHJ 2025-2012》 对危险废物进行包装,包装容器由甲方负责。

4、运输:

- (1) 甲方负责危险废物运输,即甲方负责将危险废物运输至乙方工厂储库,该过程所需车辆及产生的费用与风险由甲方承担。乙方负责危险废物在乙方工厂内的卸车。
- (2) 甲方运输车辆必须具有相应的运输资质:运输过程必须采取防扬散、防流失、防渗透或其他防止污染环境的措施;不得擅自倾倒、堆放、丢弃、遗撒危险废物。
 - 5、交接:甲、乙双方按照《湖北省危险废物监管物联网系统》进行申报、交接危险废物。

6、安全防护

- (1) 甲方负责提供甲方人员的安全防护用品和进行安全防护培训。
- (2) 乙方负责提供乙方人员的安全防护用品和进行安全防护培训。
- (3)运输司机进入乙方工厂后必须无条件严格服从乙方的安全管理规定。

第三条 结算与付款

1、结算方式:

双方同意按月度结算。即乙方在每月(<u>10</u>)号前按甲、乙双方确认的对账数据予以结算,向甲方开具发票。 甲方收到发票后,由甲方于次月(<u>10</u>)号前支付处置款。甲方未如期向乙方支付处置费,乙方有权拒绝接 收甲方的危险废物并单方解除合同,甲方每逾期一日按应付金额的千分之五支付违约金给乙方。

2、收款账户; 甲方须按合同约定按时足额付款, 甲方确认款项支付到乙方指定的账户;

账户名: 华新环境工程(武穴)有限公司

账号: 4200 1676 2080 5996 8688

开户行: 湖北省建行武穴支行营业部

3、甲方同时确认,除非收到加盖乙方公司公章并经乙方法人(负责人)签名的关于更改账户的函件。将 处置费支付到函件指定的账户外,甲方不接受乙方任何个人。加盖乙方任何其他印章(包括不限于业务专 用章、合同专用章)的函件的要求,不将处置费支付给乙方员工个人或加盖乙方其他印章的函件要求支付 处置费、否则由甲方承担一切责任。

第四条 双方责任义务

1、甲方责任义务

- (1) 甲方提供给乙方的危险废物不超出本合同所列危险废物种类,对于超出合同约定范围的危险废物, 乙方有权拒绝接收或退回,所产生的费用及法律责任由甲方承担。包括并不限于如下:
 - 1) 废物类别与合同约定不一致;
 - 2) 废物夹带合同约定外的自燃物质:
 - 3) 废物夹带合同约定外的剧毒物质;
 - 4) 废物夹带放射性废物:
 - 5) 废物夹带具有传染性、爆炸性及反应性废物;
 - 6) 废物夹带未经拆解的废电池、废家用电器和电子产品;

(6)、华颜环道

- 7) 废物夹带含汞的温度计、血压计、荧光灯管和开关;
- 8) 废物夹带有钙焙烧工艺生产铬盐过程中产生的铬渣:
- 9) 石棉类废物;
- 10) 其他未知特性和未经鉴定的固体废物;
- (2) 甲方的进厂危险废物主要指标超出以下约定指标范围的, 乙方有权拒绝接收或退回, 所产生的费用及法律责任由甲方承担。若乙方无法退回, 乙方有权与甲方重新协商确定处置价格。包括并不限于如下:

废物类别: HW49 实验室废液

- 1) 预审核样品 C1(氯)含量为 / ,进厂含量为 / 及以上的;
- 2) 预审核样品 S (硫)含量为 / ,进厂含量为 / 及以上的;
- 3) 预审核样品F (氟)含量为 / ;进厂含量为 / 及以上的;
 - 4) 预审核样品闪点≥55℃,进厂闪点<55℃的。
 - 5) 预审核样品 3≤pH≤12, 进厂pH <2或pH>12的。

废物类别: HW49 废活性炭

- 1) 预审核样品 Cl (氯) 含量为 / ,进厂含量为 / 及以上的;
- 2) 预审核样品 S (硫)含量为 / ,进厂含量为 / 及以上的:
 - 3) 预审核样品F (氦)含量为 / 进厂含量为 / 及以上的;
 - 4) 预审核样品闪点≥55℃,进厂闪点<55℃的。
 - 預审核样品 3≤pH≤12, 进厂pH <2 或 pH>12 的。
- (3)甲方负责按照《中华人民共和国国家环境保护标准-危险废物收集、贮存、运输技术规范》(HJ 2025-2012) 对危险废物进行包装,如有剧毒类危险废物、高腐蚀类危险废物和不明物,应在标签上明确注明并告知乙 方人员,否则乙方有权拒绝接收或退回,所产生的费用及法律责任由甲方承担。
- (4) 甲方提供给乙方的危险废物中参有其它杂物(如坚硬物件等),造成乙方设备损坏或故障的,甲方需 承担设备维修、更换的费用,并赔偿因此给乙方造成的经济损失。
- (5) 甲方负责按照约定向乙方支付处置费。

2、乙方责任义务

- (1) 乙方保证其作为独立的经营主体,具有处置本协议危险废物的要求资质条件。
- (2) 乙方作为专业的危险废物处置单位,必须符合环境保护规定安全、环保地处置危险废物。
- (3) 乙方承担接收危险废物后的卸车、处置的事务及相关责任。
- (4) 乙方负责协助甲方共同完成危险废物转移手续。
- (5) 乙方根据水泥窑运转情况,在满足水泥生产线的要求并不影响产品质量的前提下,乙方按处置计划通知甲方确认转运时间。
- (6) 乙方因全省统一停窑、节能减排限产停窑、环保督查、政府执法、计划性停电、检修、设备故障、 库满等原因无法处置危险废物时,需提前七天通知甲方,甲方做好危险废物存放管理。

② 华斯环境

-3-/5

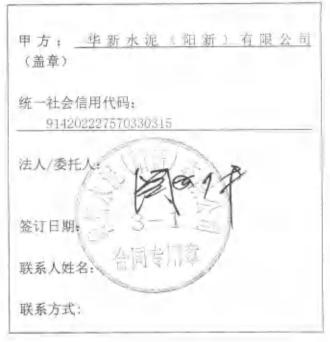
第五条 违约责任

- 1、除本合同另有约定外,合同任何一方不能在合同有效期内擅自解除本合同。
 - 2、甲方向乙方交付的危险废物种类、水分、特征成分等与合同、样品检测化验单不符的, 乙方有权拒收 并有权单方解除合同,且不承担任何违约责任。
 - 3、乙方接收后发现危险废物不符合合同约定或未按《中华人民共和国国家环境保护标准-危险废物收集、贮存、运输技术规范》(HJ 2025-2012)包装的,乙方有权将该危险废物退回甲方,所产生的费用、法律责任等由甲方承担,给乙方造成损失的还应赔偿。
 - 4、乙方因全省统一停窑、节能减排限产停窑、环保督查、政府执法、计划性停电、检修、设备故障、库 满及其他政策停窑等原因,乙方不能接收处置危险废物不属于违约。

第六条 不可抗力

由于不可抗力(如地震、洪灾等)的影响而不能履行合同的一方,应及时通知协议其他方,并积极采取有效措施减小损失,在与协议其他方协商同意后,可根据实际所受影响的时间,发生意外事件的一方可以免除履行合同的责任或者推迟履行合同,对方对由此而产生的损失不得提出赔偿要求,但未尽通知义务或未采取有效措施导致损失扩大的情况除外。

第七条 保密


甲乙双方对本合同内容及合作涉及的全部信息承担保密责任。未经对方书面同意,不得向第三方泄露。

第八条 争议解决

在本合同执行期间,甲乙双方如发生争议,双方可以协商解决。协商未果时,可向乙方住所地人民法院提起诉讼。

第九条 其他

本合同一式肆份, 甲、乙双方各执贰份, 双方签字盖章之日起生效, 具有同等法律效力。未尽事宜, 甲、乙双方可协商签订补充协议, 补充协议与本合同具有同等法律效力。

危险废物处置服务合同书

委托方(下称甲方): 华新水泥(阳新)有限公司 受托方(下称乙方): 荆州市昌盛环保工程有限公司

甲方在生产、经营过程中依法委乙方集中处置危险废物,本着符合环境保护规范的要求、平等互利的原则,双方经友好协商,达成协议如下:

一、甲方主要义务:

1、甲方作为危险废物的产单位,需按照《危险废物转移管理办法》在《湖北省危险废物物联网》上办理危险废物转移手续,经环保部门审批通过方可开展危险废物的转运工作。

甲方提供的危险废物须按废物的种类分类包装、存放,标识清楚: 甲方在每次转运过程中需对危险废物的种类和数量进行确认,对刻意 隐瞒,标识不规范或者标注错误而导致环境及安全事故,甲方应承全 部的法律责任。

- 2、甲方将生产、经营过程中产生的危险废物(甲方特移的危险 废物种类必须在乙方危险废物经营许可证范围内)交由乙方进行无害 化处置,本合同有效期内甲方不得再与第三方签订同类型转移处置合 同或将危险度物交由任何三方处理。
- 3、甲方应为乙方转移危险废物提供必要条件(包括但不限于作业场地,转运装车的机械设备,协调危险废物转移的相关人员等), 危险废物特运出甲方场地(指门房)之前所产生的相关费用及安全生

产责任由甲方承担。

- 4、甲方对乙方的业秘密(交易信息,特走交易价格,交易数量等)负有保密义务,不得向任何第三方泄漏。
 - 二、乙方主要义务:
- 1、乙方在合同有效期内,应保证所持经营许可证,营业执照等相关证件合法有效。
 - 2、甲双方在签订合后,乙方应为甲方提供危险废物管理,储存等相关识的指导及服
- 3、乙方自备运输车辆,并且必须严格按照双方协商的计划按时 按量对甲方急险废物进行特移。乙方负责运输过程中安全、环保问题, 运输途中出现任何安全、突发环境事故由乙方承担。
- 4、甲方对乙方的业秘密(交易信息,特走交易价格,交易数量等)负有保密义务,不得向任何第三方泄漏。
 - 三、危险废物名称,处置费用及付款方式:
 - 1、危险废物名称: 废矿物油及废油桶。
 - 2、价格:废油及废油桶含税价均800元/吨。
- 3、结算方式:查票结算,乙方开具增值税专用发票(税率 6%), 发票挂账一个月后,承兑或现金支付处置款。

四、违约责任:

- 1、甲、乙双方违反合同约定的保密义务的,每发现一次,违约 方须向本合同相对方支付违约金 20000 元。
 - 2、合同双方中任何方违本合同规定,守约方有权要求违约方停

止并纠正违约行为,违成守约方经济及其他损失的,违约方应负全部 责任:若违约方经守约方指出后十天之内仍未予以改正的,违约方承 担违约责任。守约方有权解除合同:

- 3、合同双方中任何一方以不正当理由撤销或解除合同,造成另一方失的,应负全部责任。
- 4、本合同自双方盖章签字后生效,有效期自 2022 年 4 月 1 日至 2023 年 3 月 31 日止。

大是有限了	
方(蓋章):	甲方(盖章):
州市昌盛至保生程有限公司	华新水泥 (阳新) 有限公司
址:荆州历发区众多路8号	地址: 阳新县韦源口镇华新路1号
号: 91421000562734807X	税号:
行:湖北银行股份有限公司荆州开发区支	银行:
등: 130900120100014788	帐号: (Way)
话: 0716-4090588	电话:
理人(卷字):如此一	代理人(签字):
期: 2022 年 月 日	日期: 2022年 月 日
话: 0716-4090588 理人(卷字): 女… >	电话: 代理人(签字): (名) (本)

合同编号:RHHJ220125-xkk004

危险废物委托处置合同

甲方:华新水泥(阳新)有限公司 乙方:湖北润恒环境科技有限公司

签订时间: 2022年1月25日

危险废物委托处置合同

甲方: 华新水泥 (阳新) 有限公司

乙方: 湖北润恒环境科技有限公司

根据《中华人民共和国民法典》、《中华人民共和国固体废物污染环境防治法》以及相关法律法规,甲乙双方本着"平等自愿、互助互惠"的原则,就甲方委托乙方危险废物处置的事宜达成如下条款,由双方共同遵守。

第一条 主体资格

乙方具备危险废物安全处理的能力及相关设施,并具有环境保护 行政主管部门许可的危险废物处置的相关资质。

第二条 危险废物处置内容及方式

2.1 危险废物名称: HW49 废油漆桶。

2.2 危险废物形态: 固/液态。

2.3 危险废物重量: 以实际转运计重为准。

第三条 合同价格及支付方式

3.1 处理价格:

废物名称	危废类别	单价
		5000 元/年(一年两次转运,
废油漆桶	HW49 900-041-49	含运费,处置费)

(处理金额含税 6%专票) 按实际转运量×单价计算(转运量以甲乙方过磅为准)。

3.2 付款方式: 甲方办理行政转移审批结束后开始转运, 危险废物转移完毕后, 乙方开具危险废物处置费用发票, 甲方收到乙方发票_当月挂账, 次月一次性支付该批次全部处置费用。

第四条 双方的权利和义务

- 4.1 乙方的权利和义务
- 4.1.1 乙方应在签订本合同时出具相应的危险废物经营许可证、营业 执照、提供己方或第三方运输单位危险废物道路运输经营许可证及相 关证照并提供复印件供甲方留存,同时所有证件必须在有限期内,并 且已在环保部门备案。
- 4.1.2 乙方根据甲乙双方协商的清运时间,及时做好危险废物的接收工作。
- 4.1.3 乙方有按时取得危险废物处理费用的权利。
- 4.1.4 甲乙双方依据《危险废物转移联单管理办法》要求,向主管机 关进行联单申报,各自完成当地环保部门的转移手续办理。
- 4.1.5 乙方发现危险废物的名称、数量、特性、形态与联单填写内容 不符的,有权要求甲方重新进行核定及修改。
 - 4.1.6 乙方有权利对进厂危险废物进行抽样分析, 若发现危险废物分析结果与采样分析结果有不符, 可与甲方重新协商处置方案。
- 4.2 甲方的权利和义务
 - 4.2.1 甲方负责在启运前对危险废物进行达标包装(应分别按照 GB12463 和 GB18597 规定的包装形式及相应的包装物性能要求进行运输包装)。并作好危险废物标签、标识,包括类别、数量、物理形态、包装方式、主要成分及危险特性、产生来源、含量等,如因标识不清、包装破损(包括正常运输过程中破损)所造成的后果及环境污染由甲方负责。
 - 4.2.2 甲方负责危险废物的装载工作,装载费用由甲方承担。确保装载过程中不发生安全事故和污染事故。装车过程中发生的污染事故及人身伤害和财产损失由甲方负责。
 - 4.2.3 甲方承诺并保证提供给乙方的危险废弃物不出现下列异常情况:

- 4.2.3.1品种未列入本合同(危险废弃物尤其不得含有剧毒物品):
- 4.2.3.2 标识不规范或者错误:包装破损或者密封不严:
- 4, 2. 3. 3 两类及以上危险废弃物人为混合装入同一容器内,或者将危险废物与非危险废物混合装入同一容器;
- 4.2.3.4 其他违反危险废弃物运输包装的国家标准、行业标准及通用技术条件的异常情况。
- 4.2.4 应严格执行《危险废物转移联单管理办法》、《湖北省固体(危险)废物转移管理办法》等相关法律法规的有关规定。
- 4.2.5 每次清运前,甲方应提前15个工作日通知乙方进行安排。
- 4.2.6 甲方负责危险废物在厂内收集和储存安全,并确保交给乙方处置的危险废物与取样前相符,否则乙方有权拒收。
- 4.2.7 甲方有根据约定的付款条件支付乙方危险废物处置费用的义务。

4.3 乙方的权利和义务

甲方将处置危险废物装车完成后,交付乙方,乙方负责运输过程 中安全、环保问题,运输途中出现任何安全、突发环境事故由乙方承 担。

第五条: 合同期限

本合同期限自 2022 年 2 月 20 日始至 2023 年 2 月 20 日止。 合同到期后,双方进行协商,重新签定委托处置合同。

第六条: 保密条款

甲乙双方对于因履行本合同而知悉的对方包括(但不限于)技术、 商业等秘密,均负有保密责任。

第七条: 违约责任

7.2 甲方不得代收其他单位产生的危险废物,再交由乙方处置,否则 甲方应支付乙方相应重量危险废物的 2 倍处理费作为违约金。甲方不 得将爆炸性、放射性的垃圾废物混装于待处置废物中,如若混装后出 现后果由甲方负责:若新增危险废物,由双方协商更改本合同。

7.3 甲方未按照合同约定支付费用的,每逾期一日按欠款的 3‰向乙 方支付违约金。若甲方延迟支付处置费用超过一个月以上,乙方有权 单方解除合同,并要求甲方支付违约金。

7.4 甲方保证提供给乙方的危险废物均与乙方协商并且不超出合同规 定的危险废物种类。由于甲方虚报所产生危险废物资料、夹带其他危 险废物、实际运往乙方的危险废物与样品、本合同约定的种类或垃圾 废物的资料不符给乙方造成的损失,由甲方负责全部赔偿责任。

7.5 甲方未按照合同约定违反危险废弃物运输包装的国家标准、行业标准及通用技术条件,存在标识不规范或者错误;包装破损或者密封不严的情形,由此造成的损失,由甲方负责全部赔偿责任。

7.6 乙方在合同有效期未取得有效危险废物运输资质或聘请不具有有效资质的运输第三方,乙方应当向甲方一次性2万元违约金,造成人身损害和经济损失的,乙方应对受害方和甲方承担相应的赔偿责任。

第八条 合同的变更、转让和解除

8.1 订立本合同所依据的法律、行政法规、规章、政策发生变化或企业生产发生变化时,本合同应相应变更相关内容;订立本合同所依据的客观情况发生重大变化,致使本合同无法履行的,经甲乙双方协商同意,可以变更或者终止合同的履行。

8.2 本合同的任何修订、补充须经双方协商并以书面形式作出。

- 8.3 未经对方书面同意,任何一方不得将本合同规定的权利和义务转让给第三方。
- 8.4 有下列情形之一的,本合同自行终止:
 - (1) 任何一方以解散、破产、关闭、清算等致使本合同不能履行。
 - (2) 双方协商一致解除合同。
 - (3) 法律法规规定的其他情形。

第九条: 争议解决

与合同有关的争议应由双方友好协商解决,如无法达成共识,应 向乙方所在地法院提起诉讼。

第十条: 其他

- 10.1 本合同未尽事宜,由双方协商订立补充协议。
- 10.2 本合同经甲乙双方签字盖章后生效。
- 10.3 本合同一式两份,双方各执一份,每份具有同等的法律效力。

(以下无正文)

甲方: 华新水泥 (阳新) 有限公司(章)

委托代理人:

地址:

电话:

户名:

开户行:

银行帐号:

税号:

乙方: 湖北海原西塘科技有限公司(章)

委托代

地址:广水市 里办事处红石塘村

电话: 0722-6299958/15342797576

户名: 湖北润恒环境科技有限公司

开户行: 湖北广水农村商业银行营业部银行

帐号: 82010000002378624

税号: 91421381MA48BFN5XT

本页以下空白

附件6

附表 验收监测期间工况记录表

		,,,, ,	一号窑	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		二号窑	
日期	名称	设计产量/处置量	产量/处置量	生产/处置负荷	设计产量/处置	产量/处置量	生产/处置负荷
		(t/d)	(t/d)	(%)	量(t/d)	(t/d)	(%)
2022.8.9			4597.49	91.95		4864.35	101.34
2022.8.10	水泥熟料	5000	4634.90	92.70	4800	5020.88	104.60
2022.8.11			4634.86	92.70		4966.37	103.47
2022.8.9			45	29.70		20	13.20
2022.8.10	 协同处置一般固废 	151.5	66	43.56	151.5	40	26.40
2022.8.11			64	42.24		30	19.80
2022.8.9			587	73.38		647	80.88
2022.8.10	协同处置 RDF	800	683	85.38	800	678	84.75
2022.8.11			713	89.13		721	90.13

武汉环景检测服务有限公司

检测报告

报告编制说明

- 1、报告无本公司报告专用章、骑缝章及 图 章无效。
- 2、报告内容涂改、缺页、增删无效;报告无三级审核无效。
- 3、检测委托方如对本报告有异议,须于收到本报告之日起十日 内以书面形式向我公司提出,逾期不予受理。无法保存、复现的样 品不受理申诉。
 - 4、未经本公司书面批准,不得部分复制本报告。
 - 5、本报告及数据不得用于商品广告,违者必究。

本机构通讯资料:

单位全称: 武汉环景检测服务有限公司

地 址:武汉市东西湖区宏图大道银潭路

天龙钢构工业园 1 号综合楼 2 楼

邮政编码: 430040

电 话: 027-83901064

第1页共43页

1、基本情况

受华新水泥(阳新)有限公司委托,根据委托方提供的监测方案,我公司于2022年8月9日~8月11日对位于湖北省阳新县新港工业园内的华新水泥(阳新)有限公司水泥窑协同综合利用替代燃料项目污染源及环境质量现状进行了现场监测。依据实际监测分析结果,编制了此报告。

2、监测内容

依据监测方案的要求,接照《固定源废气监测技术规范》 HJ/T 397-2007、《大气污染物无组织排放监测技术导则》HJ/T 55-2000、《工业企业厂界环境噪声排放标准》GB 12348-2008、《环境空气质量手工监测技术规范》HJ 194-2017、《土壤环境监测技术规范》HJ/T 166-2004、《地下水环境监测技术规范》HJ 164-2020等相关环境监测技术规范,对华新水泥(阳新)有限公司的污染源及环境质量现状进行了监测。具体监测内容见表 2-1:

表 2-1 采样信息一览表

监测类型	监测点位	点位编号	检测指标	频次
有组织废气	一号窑尾废气出口	©I.	颗粒物、SO2、NOx、NH3、HCI、HF、	
	二号窑尾废气出口	©2	汞及其化合物、铊及其化合物、镉及其化合物、铅及其化合物、砷及其化合物、钠及其化合物、锡及其化合物、锡及其化合物、锑及其化合物、锡及其化合物、钴及其化合物、锰及其化合物、镍及其化合物、银及其化合物、H2S、臭气浓度、总烃	3次/天,监测2天

报告编号: HJ202208075

第 2 页 共 43 页

监测类型	监测点位	点位编号	检测指标	频次
	上风向厂界外 20m	•1		3次/天,监测2天
无组织 废气	下风向厂界外 5m	•2	颗粒物、NH3、H2S、臭气浓度、非甲烷	
	下风向厂界外 5m	•3	总烃	
	下风向厂界外 5m	●4		
噪声	厂界东侧	▲1		昼间、夜间各监 測1次,监測2 天
	厂界南侧	▲2		
	厂界西侧	▲3	等效连续 A 声级	
	厂界北侧	▲4		
环境空气	冯坳上	O1	TSP、SO2、NO2、氯化氢、氟化物、镉、铅、汞、砷、六价铬、	监测日均值,监 测2天
			SO2、NO2、氟化物、氨、硫化氢、非甲烷总烃	监测小时值,监测2天
地下水	厂区地下水监测井 1#	☆1	水位、Na+、K+、Ca2+、Mg2+、CO32-、	2次/天, 监测2天
	厂区上游 2#	☆2	HCO3-、CI-、SO42-。pH、氨氮、硝酸盐、 亚硝酸盐、挥发性酚类、氰化物、砷、汞、	
	厂区下游 3#	☆3	铬(六价)、总硬度、铅、氟、镉、铁、锰、溶解性总固体、高锰酸盐指数、总大肠菌群、细菌总数、总 Cr、Zn、Be(铍)、Sn(锡)、Cu(铜)、Co(钴)、Ni(镍)、V(钒)	
土壤	厂内窑尾附近(可根据 实际情况调整)	□ 1		1次/天,监测1天
	冯坳上	□2	汞、铊、镉、铅、砷、铍、铬、锑、铜、钴、 锰、镍、钒	
	厂区南侧居民点	□3		

Tel: 027-83901064

E-mail: whhj_testing@163.com

Web: www.whhjtest.com

第 3 页 共 43 页

3、执行标准

执行标准见表 3-1:

表 3-1 执行标准一览表

	格	並测项目	执行标准	适用类别	标准限值
有组织废气	水泥制造	颗粒物	《水泥工业大气污染物 排放标准》 (GB 4915-2013)	"表 2" 大气污染 物特别排放限值	20 mg/m ³
		二氧化硫			
		氮氧化物			320 mg/m ³
		氨气			8 mg/m ³
	协同处置	氯化氢	《水泥窑协同处置固体	"表 1" 中标准限 值要求	10 mg/m ³
		氟化氢			1 mg/m ³
		汞及其化合物			0.05 mg/m ³
		铊、镉、铅、砷及其 化合物 (以 TI+Cd+Pb+As 计)			1.0 mg/m ³
		铍、铬、锡、锑、铜、 钴、锰、镍、钒及其 化合物(以 Be+Cr+ Sn+Sb+Cu+Co+Mn Ni+V 计)			0.5 mg/m ³
		噪声	《工业企业厂界环境噪 声排放标准》(GB 12348-2008)	"表1"工业企业厂 界环境噪声排放 限值3类区	昼间: 65 dB (A) 夜间: 55 dB (A)
	TSP			"表 2" 二级标准	0.3 mg/m³(日均值)
		二氧化硫			0.15mg/m³ (日均值) 0.5mg/m³ (小时值)
环境空气		二氧化氮	《环境空气质量标准》 (GB3095-2012)	"表 1" 二级标准	0.08mg/m ³ (日均值) 0.2mg/m ³ (小时值)
		氟化物		"表 A.1" 二级标 准	0.007mg/m³(日均值) 0.02mg/m³(小时值)
		镉			1×10 ⁻⁵ mg/m ³ (日均值)
		铅		"表 2" 二级标准	0,001mg/m³ (日均值)
		汞		"表 A.I" 二级标 准	1×10 ⁻⁴ mg/m³ (日均值)
		砷			1.2×10-5mg/m³(日均值
		六价铬			0.000025 (年均值)
		氨	《环境影响评价技术导 则 大气环境》	附录 D 其他污染 物空气质量浓度	0.2mg/m³ (小时值)
		硫化氢			0.01mg/m³ (小时值)

报告编号: HJ202208075

第 4 页 共 43 页

检测项目		执行标准	适用类别	标准限值
	氯化氢	(HJ 2.2-2018)	参考限值	0.05mg/m³ (小时值) 0.015mg/m³ (日均值)
	非甲烷总烃	1	1	2.0mg/m³ (小时值)
	钾离子	《地下水质量标准》 (GB/T 14848-2017)	"表 1"中Ⅲ类标准限值	/
	钠离子			200 mg/L
	钙离子			/
	镁离子			1
	碳酸盐			1
	重碳酸盐			1
	硫酸盐			250 mg/L
	溶解性总固体			1000 mg/L
	氯化物			250 mg/L
	pH			6.5~8.5
	高锰酸盐指数			3.0 mg/L
	東氨			0.50 mg/L
	六价铬			0.05 mg/L
	氰化物			0.05 mg/L
	砷			0.01 mg/L
地下水	汞			0.001 mg/L
JE I'N	硝酸盐			20 mg/L
	亚硝酸盐			1.0 mg/L
	挥发酚			0.002 mg/L
	总硬度			450 mg/L
	铅			0.01 mg/L
	氟化物			1.0 mg/L
	铜			1.0 mg/L
	锌			1.0 mg/L
	铁			0.3 mg/L
	锰			0.10 mg/L
	镉			0.005 mg/L
	总大肠菌群			3.0 CFU/100mL
	细菌总数			100CFU/mL
	铍	《地下水质量标准》 (GB/T 14848-2017)	"表 2"中Ⅲ类标 — 准限值	0.002 mg/L
	镍			0.02 mg/L
	钒			,

报告编号: HJ202208075

第 5 页 共 43 页

检测项目		执行标准	适用类别	标准限值
	钴			0.05 mg/L
	镉		表1筛选值	20 mg/kg(第一类) 65mg/kg(第二类)
	砷	《土壤环境质量 建设 用地土壤污染风险管控 标准》(GB 36600-2018)		20 mg/kg (第一类) 60mg/kg (第二类)
	铜			2000 mg/kg(第一类) 18000mg/kg(第二类)
	铅			400 mg/kg(第一类) 800mg/kg(第二类)
	六价铬			3.0 mg/kg(第一类) 5.7mg/kg(第二类)
土壤	镍			150 mg/kg(第一类) 900mg/kg(第二类)
	汞			8 mg/kg (第一类) 38mg/kg (第二类)
	铊		表 2 筛选值	1
	铍			15 mg/kg(第一类) 29mg/kg(第二类)
	锑			20 mg/kg(第一类) 180mg/kg(第二类)
	钴			20 mg/kg(第一类) 70 mg/kg(第二类)
	钒			165 mg/kg(第一类) 752mg/kg(第二类)

报告编号: HJ202208075

第6页共43页

4、检测仪器、分析方法及依据

检测仪器型号、名称、分析方法及依据见表 4-1:

表 4-1 检测仪器、分析方法及依据一览表

	检测项目	检测仪器	4444	CHICA	
	1五/87-9(日	型号、名称、编号	分析方法	方法来源	检出限
	рĦ	SX620 便携式 pH 计 WHHJ/YS-04-068	玻璃电极法	GB 6920-86	/
	氨氮	V-1100 可见分光光度计 WHHJ/YS-01-011	纳氏试剂分光光度法	HJ 535-2009	0.025 mg/L
	高锰酸盐指数	HWS-28 电热恒温水浴锅 WHHJ/YS-02-002	酸性法	GB 11892-89	0,5 mg/L
	氟化物	YC7000 离子色谱仪 WHHJ/YS-01-020	离子色谱法	HJ 84-2016	0.006 mg/L
	氯离子	YC7000 离子色谱仪 WHHJ/YS-01-020	高子色谱法	HJ 84-2016	0.007 mg/L
	硫酸根离子	YC7000 离子色谱仪 WHHJ/YS-01-020	离子色谱法	HJ 84-2016	0.018 mg/L
	氰化物	V-1100 可见分光光度计 WHHJ/YS-01-010	异烟酸-吡唑啉酮分光 光度法	HJ 484-2009	0.004 mg/L
地下水	葡萄	AFS-230E 双道原子荧光光度计 WHHJ/YS-01-017	原子荧光法	HJ 694-2014	0.3 μg/L
	镉	AA-7020 石墨炉原子吸收分光光度计 WHHJ/YS-01-019	石墨炉原子吸收法	《水和废水监测 分析方法》国家环 保局第四版.增补 版	0.10µg/L
	铜	AA-7020 石墨炉原子吸收分光光度计 WHHJ/YS-01-018	原子吸收分光光度法	GB 7475-87	1 μg/L
	锌	AA-7020 石墨炉原子吸收分光光度计 WHHJ/YS-01-018	原子吸收分光光度法	GB 7475-87	0.02 mg/L.
	硝酸盐	UV-1800SPC 紫外可见分光光度计 WHHJ/YS-01-012	紫外分光光度法	HJ/T 346-2007	0.08 mg/L
	亚硝酸盐	V-1100 可见分光光度计 WHHJ/YS-01-010	分光光度法	GB 7493-87	0,003 mg/L
	总大肠菌群	SPX-100B-Z 生化培养箱	滤膜法	GB/T	1

Tel: 027-83901064

E-mail: whhj testing@163.com

Web: www.whhjtest.com

报告编号: HJ202208075

第7页共43页

检测项目	检测仪器	N. Leave	200000	1000	
EMPALI	型号、名称、编号	分析方法	方法来源	检出限	
	WHHJ/YS-02-058		5750.12-2006		
细菌总数	HPX-9272MBE 电热恒温培养箱 WHHJ/YS-02-021	培养基培养法	《水和废水监测 分析方法》第四版 增补版 5.2.4	V	
挥发酚	挥发酚 V-1100 可见分光光度计 WHHJ/YS-01-011 AFS-230B 汞 双道原子荧光光度计 WHHJ/YS-01-017		HJ503-2009	0.0003 mg/	
汞			HJ 694-2014	0.04 μg/L	
铅	AA-7020 石墨炉原子吸收分光光度计 WHHJ/YS-01-019	石墨炉原子吸收法	《水和废水监测分 析方法》第四版 增 补版	1.0 µg/L	
铁	AA-7020 石墨炉原子吸收分光光度计 WHHJ/YS-01-018	火焰原子吸收分光光 度法	GB 11911-89	0.03 mg/L	
锰	AA-7020 石墨炉原子吸收分光光度计 WHHJ/YS-01-018	火焰原子吸收分光光 度法	GB 11911-89	0.01 mg/L	
总铬	V-1100 可见分光光度计 WHHJ/YS-01-011	高锰酸钾氧化-二苯碳 酰二肼分光光度法	GB 7466-87	0.004 mg/1	
铍	Optima 8300 电感耦合等离 子体发射光谱仪 (YHJC-JC-003-01)	生活饮用水标准检验 方法 金属指标	GB/T 5750.6-2006 (1.4)	0.0002 mg/l	
锡	Optima 8300 电感耦合等离 子体发射光谱仪 (YHJC-JC-003-01)	水质 32 种元素的测定 电感耦合等离子体发 射光谱法	HJ 776-2015	0.04 mg/L	
钒	Optima 8300 电感耦合等离 子体发射光谱仪 (YHJC-JC-003-01)	生活饮用水标准检验 方法 金属指标	GB/T 5750.6-2006 (1.4)	0.005 mg/L	
镁离子	YC7000 高子色谱仪 WHHJ/YS-01-020	离子色谱法	HJ 812-2016	0.02 mg/L	
钾离子	YC7000 离子色谱仪 WHHJ/VS-01-020	离子色谱法	НЈ 812-2016	0.02 mg/L	
钙离子	YC7000 离子色谱仪 WHHJ/YS-01-020	离子色谱法	HJ 812-2016	0.03 mg/L	
六价铬	V-1100 可见分光光度计 WHHJ/YS-01-010	二苯碳酰二肼 分光光度法	GB 7467-87	0.004 mg/L	
钠离子	YC7000 离子色谱仪	离子色谱法	HJ 812-2016	0.02 mg/L	

报告编号: HJ202208075

第8页共43页

	检测项目	检测仪器	0.101.41			
	MAN XII	型号、名称、编号	分析方法	方法来源	检出限	
		WHHJ/VS-01-020				
	镍	电感耦合等离子体发射光谱 仪	发射光谱法	HJ 776-2015	0.007 mg/L	
	钴	Optima 8300 电感耦合等离 子体发射光谱仪 (YHJC-JC-003-01)	《生活饮用水标准 检验方法 金属指标	(GB/T 5750.6-2006 (1.4))	0.0025mg/L	
	溶解性总固体	AR224CN 电子天平 WHHJ/YS-01-005	称量法	GB/T 5750.4-2006	1	
	总硬度	滴定管	EDTA 滴定法	GB 7477-87	0.05 mmol/L	
	碳酸根	滴定管	《水和废水监测 酸碱指示剂滴定法 析方法》国家环位 局(第四版增补		1.0 mg/L	
	碳酸氢根	満定管	酸碱指示剂滴定法	《水和废水监测分析方法》国家环保总局(第四版增补版)	1.0 mg/L	
	颗粒物	AR224CN 电子天平 WHHJ/YS-01-001	重量法	GB/T 16157-1996 (8)	0.1 mg/m ³	
	二氧化硫	明华 MH3300 智能烟尘测试仪 WHHJ/YS-04-057	定电位电解法	HJ/T 57-2017	3 mg/m ³	
	氮氧化物	明华 MH3300 智能烟尘测试仪 WHHJ/YS-04-057	定电位电解法	HJ 693-2014	3 mg/m ³	
	氨气	V-1100 可见分光光度计 WHHJ/YS-01-011	纳氏试剂分光光度法	HJ 533-2009	0.25 mg/m ³	
f组织废 气	氯化氢	721 可见分光光度计 (VHJC-JC-012-01)	硫氰酸汞分光光度 法	HJ/T 27-1999	0.9 mg/m ³	
	氯化氢	CIC-D100 离子色谱(阴) (YHJC-JC-024-01)	离子色谱法	HJ 688-2019	0.08 mg/m ³	
	汞及其化合物	AFS-8510 原子荧光光度计 (YHJC-JC-026-02)	原子荧光光度法	《空气和废气监测 分析方法》(第四版 增补版)5.3.7.2	3×10 ⁻¹ μg/m ²	
	铊及其化合物			HJ 657-2013	0.000000	
	镉及其化合物	NexION 1000 电感耦合等		HJ 657-2013	0.000008mg/m ³	
	铅及其化合物	离子体发射质谱仪	电感耦合等离子体	HJ 657-2013	0.000008mg/m ³	
	砷及其化合物	(YHJC-JC-061-01)	质谱法	HJ 657-2013	0.0002mg/m ³	
	铍及其化合物			HJ 657-2013	0.0002mg/m ³ 0.000008mg/m ³	

报告编号: HJ202208075

第9页共43页

	检测项目	检测仪器	W 1- 1 /2	10000	
	拉州英日	型号、名称、编号	分析方法	方法来源	檢出限
	铬及其化合物			HJ 657-2013	0.0003mg/m ³
	锡及其化合物			HJ 657-2013	0.0003mg/m ³
	锑及其化合物			HJ 657-2013	0.00002mg/m ³
	铜及其化合物			HJ 657-2013	0.0002mg/m ³
	钴及其化合物			HJ 657-2013	0.000008mg/m
	锰及其化合物			HJ 657-2013	0,00007mg/m ³
	镍及其化合物			HJ 657-2013	0.0001mg/m ³
	钒及其化合物			HJ 657-2013	0.00003mg/m ³
	汞	AFS-8510 原子荧光光度 计 (YHJC-JC-026-02)	土壤质量 总汞、总 神、总铅的测定 原 子荧光法 第1部分; 土壤中总汞的测定	GB/T 22105.1-2008	0.002mg/kg
	铅	PinAAcle 900H 火焰石墨 炉原子吸收光谱仪 (YHJC-JC-027-02)	土壤和沉积物 铊的 测定 石墨炉原子吸 收分光光度法	HJ 1080-2019	0.1mg/kg
	镉	PinAAcle 900H 火焰石墨 炉原子吸收光谱仪 (YHJC-JC-027-02)	土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法	GB/T 17141-1997	0.01mg/kg
	铅	PinAAcle 900H 火焰石墨 炉原子吸收光谱仪 (YHJC-JC-027-01)	土壤质量 铅、镉的 测定 石墨炉原子吸 收分光光度法	GB/T 17141-1997	0.1mg/kg
土壌	神	AFS-8220 原子荧光光度计 (YHJC-JC-026-01)	土壤和沉积物 汞、 砷、硒、铋、锑的测定 微波消解/原子荧光法	HJ 680-2013	0.01mg/kg
	铍	PinAAcie 900H 火焰石墨 炉原子吸收光谱仪 (YHJC-JC-027-02)	土壤和沉积物 铍的 测定 石墨炉原子吸收分 光光度法	HJ 737-2015	0.03mg/kg
	镥	TAS-990 原子吸收分光光 度计(YHJC-JC-056-01)	土壤和沉积物 铜、 锌、铅、镍、铬的测 定 火焰原子吸收分 光光度法	HJ 491-2019	4mg/kg
	锑	AFS-8510 原子荧光光度计 (YHJC-JC-026-02)	土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法	HJ 680-2013	0.01mg/kg

第10页共43页

	检测项目	检测仪器	44.40		
	100/03/90日	型号、名称、编号	分析方法	方法来源	检出限
	铜	TAS-990 原子吸收分光光 度计(YHJC-JC-056-01)	土壤和沉积物 铜、 锌、铅、镍、铬的测 定 火焰原子吸收分 光光度法	HJ 491-2019	lmg/kg
	钴	NexION 1000 电感耦合等 离子体发射质谱仪 (YHJC-JC-061-01)	土壤和沉积物 12 种 金属元素的测定 王 水提取-电感耦合等 高子体质谱法	HJ 803-2016	0.04mg/kg
	锰	NexION 1000 电感耦合等 离子体发射质谱仪 〈YHJC-JC-061-01〉	土壤和沉积物 12 种 金属元素的测定 王 水提取-电感耦合等 离子体质谱法	HJ 803-2016	0.4mg/kg
	镍	TAS-990 原子吸收分光光 度计(YHJC-JC-056-DI)	土壤和沉积物 铜、 锌、钼、镍、铬的测 定 火焰原子吸收分 光光度法	НЈ 491-2019	3mg/kg
	钒	NexION 1000 电感耦合等 离子体发射质谱仪 (YHJC-JC-061-01)	土壤和沉积物 12 种 金属元素的测定 王 水提取-电感耦合等 离子体质谱法	HJ 803-2016	0.4mg/kg
	颗粒物	FA1004 电子天平 WHHJ/YS-01-001	重量法	GB/T 15432-1995	0.001 mg/m ³
	氨	V-1100 可见分光光度计 WHHJ/YS-01-011	纳氏试剂分光光度法	HJ 533-2009	0.25 mg/m ³ (50mL) 0.01mg/m ³ (10mL)
无组织废 气	硫化氯	V-1100 可见分光光度计 WHHJ/YS-01-011	亚甲蓝分光光度法	《空气和废气监测分析方法》(第四版.增补版) 3.1.11.2	0.07 μg/m ³
	臭气浓度	无臭袋	三点比较式臭袋法	GB/T 14675-93	1
	非甲烷总烃	GC 9790 puls 气象色谱仪 WHHJ/YS-01-021	环境空气 总烃 甲 烷和非甲烷总烃的 测定(气相色谱法)	HJ 604-2017	0.07 mg/m ²
环境空气	TSP	FA1004 电子天平 WHHJ/YS-01-001	重量法	GB/T 16157-1996 (8)	0.1 mg/m ³
	二氧化硫	V-1100 可见分光光度计 WHHJ/YS-01-011	甲醛吸收-副玫瑰本案 分光光度法	HJ 482-2009	0.007 mg/m ³ (10mL) 0.004mg/m ³ (50mL)
	二氧化氮	V-1100 可见分光光度计 WHHJ/YS-01-011	盐酸萘乙二胺分光 光度法	HJ 479-2009	0.005 mg/m ³ (10mL) 0.003mg/m ³ (50mL)

报告编号; HJ202208075

第 11 页 英 43 页

检测项目	检测仪器	H let t St	TAXABLE T			
12/M/-M E	型号、名称、编号	分析方法	方法来源	检出限		
氯化氢	YC7000 离子色谱仪 WHHJ/YS-01-020	离子色谱法	HJ 549-2016	1		
氟化物	PXSJ-270F 离子计 (YHJC-JC-018-02)	环境空气 氟化物的 测定 滤膜采样/氟离 子选择电极法	HJ 955-2018	0.5 μg/m ³		
氦	V-1100 可见分光光度计 WHHJ/YS-01-011	纳氏试剂分光光度法	HJ 533-2009	0.25 mg/m ³ (50ml, 0.01mg/m ³ (10mL)		
硫化氢	V-1100 可见分光光度计 WHHJ/YS-01-011	亚甲蓝分光光度法	《空气和废气监测分析方法》(第四版.增补版) 3.1.11.2	0.07 μg/m³		
非甲烷总烃	GC 9790 puls 非甲烷总烃 气象色谱仪 WHHJ/YS-01-021		完总烃 气象色谱仪 烷和非甲烷总烃的 WHHJ/YS-01-021 测定(气相色谱法)	环境空气 总烃 甲 烷和非甲烷总烃的 测定(气相色谱法)	HJ 604-2017	0.07 mg/m ³
境	Optima 8300 电感耦合等 离子体发射光谱仪 (YHJC-JC-003-01)	空气和废气 颗粒物 中金属元素的测定 电感耦合等离子体 发射光谱法	HJ 777-2015	0.004 μg/m³		
铅	Optima 8300 电感耦合等 离子体发射光谱仪 (YHJC-JC-003-01)	空气和废气 颗粒物 中金属元素的测定 电感耦合等离子体 发射光谱法	HJ 777-2015	0,003 μg/m ³		
汞	热解析-冷原子吸收测汞 仪	金膜富集/冷原子吸 收分光光度法	HJ 910-2017	2.0ng/m ³ (60L) 0.lng/m ³ (1440L)		
砷	Optima 8300 电感耦合等 离子体发射光谱仪 (YHJC-JC-003-01)	空气和废气 颗粒物 中金属元素的测定 电感耦合等离子体 发射光谱法	HJ 777-2015	0.005 μg/m ³		
六价铬	离子色谱仪	柱后衍生离子色谱 法	HJ 779-2015	0.005 ng/m ³		
噪声	AWA5688 型多功能声级计 WHHJ/YS-04-034	工业企业厂界环境噪	ØB 12312 2662			
	AWA6221A 型声级校准器 WHHJ/YS-04-013	声排放标准	GB-12348-2008	-1-		

报告编号: HJ202208075 第 12 页 共 43 页

5、质量控制及质量保证

- (1) 检测人员经过本公司专业上岗培训并为合格专业检测人员。
 - (2) 所使用仪器、设备均经计量检定,且在有效期内使用。
- (3)数据和检测报告实行三级审核制度,检测过程按照本公司质量管理规定进行全程序质量控制。
- (4)运行工况满足检测技术规范要求,严格按照国家标准与技术规范实施检测。
- (5) 检测实行空白检测、重复检测、加标回收、控制样品分析等质控措施,确保检测数据的准确性。

HUANJING 武汉环景 报告编号: HJ202208075

检测报告

第 13 页 共 43 页

6、检测结果

6.1 有组织废气

有组织废气检测结果见表 6-1~6-2:

表6-1 有组织废气检测结果(一号窑尾)

	管	道名称		管道形状	烟道截面 (m²)	管道高	度 (m)
监测日期	-	号窑尾		圆形	28.0862		80
	监测项	目	单位	第一次	第二次	第三次	均值
	标干流	=	m³/h	577336	587425	601219	588660
	温度		°C	106.7	107.3	110.4	108.1
	湿度		%	9.5	9,8	9.9	9.7
	流速		m/s	8.9	9.1	9.4	9.1
	氧含量		%	10.8	10.4	10.6	10.6
		实测浓度	mg/m ³	9.2	9.1	8.9	9.1
	颗粒物	折算浓度	mg/m ³	9,9	9.4	9.4	9.6
		排放速率	kg/h	5.31	5.35	5.35	5.34
	二氧化硫	实测浓度	mg/m³	ND (3)	ND (3)	ND (3)	1
		折算浓度	mg/m³	.1	1	1	1
2022年		排放速率	kg/h	1	1	1	1
8月9日		实测浓度	mg/m³	258	280	254	264
	氮氧化物	折算浓度	mg/m³	278	291	269	279
		排放速率	kg/h	149	164	153	155
-	标干流量	ł	m³/h	612513	629224	631300	624346
	温度		°C	108.6	108.5	106.4	107.8
	湿度		%	9.6	10.0	10.2	9.9
	流速		m/s	9.5	9.8	9.8	9.7
	氧含量		%	10.2	10.2	10.3	10.2
	实测浓度	实测浓度	mg/m³	0.00015	0.00019	0.00013	0.00016
	汞及其化合物	折算浓度	mg/m³	0.00015	0.00019	0.00013	0.00016
		排放速率	kg/h	0.92×10 ⁻⁴	1.20×10 ⁻⁴	0.82×10 ⁻⁴	0.98×10

Tel: 027-83901064

E-mail: whhi testing@163.com

报告编号: HJ202208075

第14页共43页

	管注	道名称		管道形状	烟道截面(m²)	管道高	度 (m)
监测日期	-	号窑尾		圆形	28.0862	80	
	监测项目		单位	第一次	第二次	第三次	均值
		实测浓度	mg/m³	2.52	2,52	3.37	2.80
	氨气	折算浓度	mg/m ³	2.57	2,57	3.46	2.87
		排放速率	kg/h	1,54	1.59	2,13	1.75
		实测浓度	mg/m³	0.018	0.024	0.029	0.024
	硫化氢	折算浓度	mg/m³	0.018	0.024	0.030	0.024
		排放速率	kg/h	1.10×10 ⁻²	1.51×10 ⁻²	1.83×10-2	1.48×10
	标干流量	E	m³/h	588818	596766	606756	597447
	温度		°C	106.4	106.3	106.9	106.5
	湿度		00	9.8	9.6	9.9	9.77
	流速		m/s	9.1	9,2	9.4	9.2
	氧含量		9/6	10.6	10.8	9.9	10.4
		实测浓度	mg/m³	0.000163	0.000127	0.000153	0.000148
	铊及其化合物	折算浓度	mg/m³	0.000172	0.000137	0.000152	0.000154
		排放速率	kg/h	9.60×10-5	7.58×10 ⁻⁵	9.28×10-5	8.82×10
		实测浓度	tug/m³	0.000111	0.000090	0.000108	0.000103
	镉及其化合物	折算浓度	mg/m ³	0.000117	0.000097	0.000107	0,000107
		排放速率	kg/h	6.54×10-5	5.37×10 ⁻⁵	6.55×10 ⁻⁵	6.15×10 ⁻⁵
		实测浓度	mg/m ³	0.0072	0.0062	0.0077	0.0070
	鉛及其化合物	折算浓度	mg/m ³	0.0076	0.0067	0.0076	0.0073
		排放速率	kg/h	4.24×10 ⁻³	3.70×10 ⁻³	4.67×10 ³	4.20×10 ⁻³
		实测浓度	mg/m^3	0.0009	0.0009	0,0010	0.0009
	砷及其化合物	折算浓度	mg/m³	0.00095	0.00097	0.00099	0,0010
		排放速率	kg/h	5.30×10 ⁻¹	5,37×10 ⁻⁴	6.07×10+	5.58×10 ⁻⁴
	铊、镉、铅、砷及 其化合物(以	实测浓度	mg/m³	0,008374	0.007317	0.008961	0.008217
		折算浓度	mg/m³	0.008857	0.007891	0.0088800.	0.008543
	TI+Cd+Pb+As 計)	排放速率	kg/h	4.93 × 10 ⁻³	4.37×10 ⁻³	5.44×10 ⁻³	4.91×10 ⁻³
	铍及其化合物	实测浓度	mg/m³	0.000083	0.000089	0.000090	0.000087
	WAXAST PL 口刊2	折算浓度	mg/m³	0.000088	0.000096	0.000089	0.000091

报告编号: HJ202208075

第 15 页 共 43 页

	管道	名称		管道形状	烟道截面 (m²)	管道高	度 (m)
金测日期		一号窑尾			28.0862		80
	监测项目		单位	第一次	第二次	第三次	均值
		排放速率	kg/h	4.89×10 ⁻⁵	5.31×10-5	5.46×10-5	5.22×10
		实测浓度	mg/m³	0.0120	0.0134	0,0136	0.0130
	铬及其化合物	折算浓度	mg/m³	0,0127	0.0144	0.0135	0.0135
		排放速率	kg/h	7.07×10 ⁻³	8.00×10 ⁻³	8,25×10 ⁻³	7.77×10°
		实测浓度	mg/m ²	0.0008	0.0008	0.0009	8000.0
	锡及其化合物	折算浓度	mg/m³	0.0008	0.0009	0.0009	0.0009
		排放速率	kg/h	4.71×10+	4.77×10 ⁻¹	5.46×10 ⁻⁴	4.98 × 10
	锑及其化合物	实测浓度	mg/m³	0.00043	0.00043	0.00043	0.00043
		折算浓度	mg/m ³	0.00045	0.00046	0.00043	0.00045
		排放速率	kg/h	2.53×10 ⁻⁴	2.57×10 ⁻⁴	2.61×10-4	2.57×10
	铜及其化合物	实测浓度	mg/m³	0.0143	0.0168	0.0169	0.016
		折算浓度	mg/m³	0.0151	0.0181	0.0167	0.017
		排放速率	kg/h	0.84×10^{-3}	1.00×10 ⁻²	1.03×10 ⁻²	0.96×10-2
		实测浓度	mg/m ³	0.000300	0.000255	0.000270	0.000275
	钴及其化合物	折算浓度	mg/m³	0.000317	0.000275	0.000267	0.000286
		排放速率	kg/h	1.77×10-	1,52×10 ⁻¹	1.64×10 ⁻⁴	1.64×10 ⁻⁴
		实测浓度	mg/m³	0.0223	0.0188	0.0254	0.0222
	锰及其化合物	折算浓度	mg/m³	0.0236	0.0203	0.0252	0.0230
		排放速率	kg/h	1.31×10^{-2}	1,12×10 ⁻²	1.54×10 ⁻²	1.32×10 ⁻³
		实测浓度	mg/m³	0.0020	0.0021	0.0018	0.0020
	镍及其化合物	折算浓度	mg/m³	0.0021	0.0023	0.0018	0.0021
	钒及其化合物	排放速率	kg/h	1.12×10 ⁻³	1.25×10 ⁻³	1,09×10 ⁻³	1.15×10 ⁻³
		实测浓度	mg/m ³	0.00236	0.00277	0.00307	0.00273
		折算浓度	mg/m³	0.00250	0.00299	0.00304	0.00284
		排放速率	kg/h	1,39×10 ⁻³	1,65 × 10 ⁻³	1.86×10 ⁻³	1,63
	铍、铬、锡、锑、锑、	实测浓度	mg/m³	0.054573	0.055444	0.062460	0.057492
	铜、钴、锰、镍、钒	折算浓度	mg/m³	0.057721	0.059793	0.061897	0.059804

报告编号: HJ202208075

第 16 页 共 43 页

	管道	名称		管道形状	烟道截面 (m²)	管道高	度 (m)
监测日期	一号	窑尾		圆形	28,0862	80	
	监测项目		单位	第一次	第二次	第三次	均值
	及其化合物(以 Be+Cr+Sn+Sb+Cu+C o+Mn+Ni+V 计)	排放速率	kg/h	3.21×10 ⁻²	3.31×10-2	3.79×10 ⁻²	3.44×10
		实测浓度	mg/m³	5.40	3.79	3.80	4.33
	氯化氢	折算浓度	mg/m ³	5.71	4.09	3.77	4.52
	384 PL 321	折算浓度	mg/m³	5.71	4.09	3.77	4.52
		排放速率	kg/h	3.18	2.26	2.31	2.58
		实测浓度	mg/m³	0.34	0,58	0.44	0.45
	氟化氢	折算浓度	mg/m³	0.36	0.63	0.44	0.48
		排放速率	kg/h	0.200	0.346	0.367	0.304
	标干流量		m³/h	536747	559740	552728	549738
	温度		°C.	138.2	134,7	136.1	136.3
	湿度		%	6.8	5.8	5.6	6.1
	流速		m/s	8.7	8.9	8.8	8.8
	氧含量		%a	10.2	10.3	10.5	10.3
		实测浓度	mg/m ³	9.84	8.27	6.25	8.12
	总烃	折算浓度	mg/m ³	10.0	8.50	6.55	8.35
		排放速率	kg/h	5.28	4.63	3.45	4.45
	臭气浓度	实测浓度	1	417	741	550	1
	75 Mina	排放速率	kg/h	1	1	.1	1
-	标干流量		m³/h	604707	590912	598117	597912
	温度		°C	108.5	109.1	108.6	108.7
	湿度		%	9.6	9.6	9.6	9,6
2022年	流速		m/s	9.4	9.2	9.3	9,3
月10日	氧含量		%	10,5	10.4	10.5	10.5
		实测浓度	mg/m³	10.1	9.8	9.9	9.9
	颗粒物	折算浓度	mg/m³	10,6	10.2	10.4	10.4
	į,	排放速率	kg/h	6.11	5,79	5,92	5.94

报告编号: HJ202208075

第 17 页 共 43 页

	管	道名称		管道形状	烟道截面 (m²)	管道高	度 (m)
监测日期	_	号窑尾		圆形	28.0862		80.
	监测项目		单位	第一次	第二次	第三次	均值
		实测浓度	mg/m ³	ND (3)	ND (3)	ND (3)	1
	二氧化硫	折算浓度	mg/m ³	1	1	1	1
		排放速率	kg/h	/	1	T	1
		实测浓度	mg/m ³	279	263	280	274
	氮氧化物	折算浓度	mg/m ³	292	273	293	286
		排放速率	kg/h	169	155	167	164
	标干流	a	m³/h	588453	593428	597890	593257
	温度		°C	107.3	107,9	107.9	107.7
	湿度		0/0	10.4	9.5	9.8	9.9
	流速		m/s	9.2	9.2	9,3	9.2
	氧含量	t	9/6	10.2	10.0	10.5	10.2
		实测浓度	mg/m³	0.00013	0.00011	0.00015	0.00013
	汞及其化合物	折算浓度	mg/m³	0.00013	0.00011	0.00016	0.00013
		排放速率	kg/h	7.65×10 ⁻⁵	6.53×10 ⁻⁵	8.97×10 ⁻⁵	7.72×10
1		实测浓度	mg/m³	3,86	1.93	3.16	2,98
	氨气	折算浓度	tug/m³	3.93	1.93	3.31	3.06
		排放速率	kg/h	2,27	1.15	1.89	1,77
		实测浓度	mg/m³	0.023	0.018	0.022	0.021
	硫化氢	折算浓度	mg/m³	0.023	0.018	0.023	0.021
		排放速率	kg/h	1.35×10 ⁻²	1,07×10-2	1,32×10 ⁻²	1.25×10
	标干流量	Ē	m³/h	585032	598518	591651	591734
	温度		°C	107.9	107,5	108.2	107.9
	湿度		%	9.8	9.8	9.7	9.8
	流速		m/s	9.1	9,3	9,2	9.2
	氧含量		0/6	10.2	10,8	10.2	10.4
		实测浓度	mg/m³	0.000178	0.000155	0.000158	0.000164
	铊及其化合物	折算浓度	mg/m³	0.000181	0.000167	0.000161	0.000170
		排放速率	kg/h	1.04×10 ⁻⁴	0.93 × 10 ⁻⁴	0.93×10 ⁻¹	0.97×10

第 18 页 共 43 页

	管注	首名称		管道形状	烟道截面 (m²)	管道高	5度(m)
监测日期	_	一号窑尾			28.0862		80
	监测项目		单位	第一次	第二次	第三次	均值
		实测浓度	mg/m³	0.000089	0.000112	0.000115	0.00010
	缅及其化合物	折算浓度	mg/m³	0,000091	0.000121	0.000117	0.11000.0
		排放速率	kg/h	5.21×10-5	6.70×10 ⁻⁵	6.80×10-5	6.24×10
		实测浓度	mg/m ¹	0.0062	0,0065	0.0067	0.0065
	铅及其化合物	折算浓度	mg/m³	0.0063	0.0070	0.0068	0.0067
4		排放速率	kg/h	3.63×10-3	3.89×10 ⁻³	3.96×10 ⁻³	3.83×10
		实测浓度	mg/m³	0.0010	0.0008	0.0009	0.0009
	砷及其化合物	折算浓度	mg/m³	0.0010	0.0009	0.0009	0.0009
		排放速率	kg/h	5.85×10 ⁻⁴	4.79×10 ⁻⁴	5.33×10 ⁻¹	5.32×10
	能、镉、铅、砷及 其化合物(以 TI+Cd+Pb+As 计)	实测浓度	mg/m³	0.007467	0.007567	0.007873	0.007636
		折算浓度	mg/m ³	0.007605	0.008160	0.008019	0.007928
	1,0	排放速率	kg/h	437×10 ⁻³	4.53×10 ⁻³	4.66×10 ⁻³	4.52×10
		实测浓度	mg/m³	0.000080	0.000092	0.000095	0.000089
	铍及其化合物	折算浓度	mg/m³	0.000081	0.000099	0.000097	0,000092
		排放速率	kg/h	4.68×10-5	5,51×10-5	5.62×10 ⁻⁵	5,27×10 ⁻⁵
		实测浓度	mg/m ³	0.0130	0.0104	0.0106	0.0113
	铬及其化合物	折算浓度	ing/m ³	0.0132	0.0112	0.0108	0.0117
		排放速率	kg/h	7.61×10 ⁻³	6.22×10 ⁻³	6.27×10 ⁻³	6.7×10 ⁻³
		实测浓度	mg/m³	0.0007	0.0007	0.0007	0.0007
	锡及其化合物	折算浓度	ing/m³	0.0007	8000.0	0.0007	0.0007
		排放速率	kg/h	4.10×10 ⁻⁴	4.19×10 ⁻⁴	4.14×10-1	4.14×10 ⁻⁴
		实测浓度	mg/m³	0.00036	0.00035	0.00037	0.00036
	锑及其化合物	折算浓度	mg/m³	0.00037	0.00038	0.00038	0.00038
		排放速率	kg/h	2.11×10-4	2.09×10-4	2.19×10 ⁻⁴	2.13×10
		实测浓度	mg/m³	0.0156	0.0133	0.0161	0.015
	铜及其化合物	折算浓度	mg/m³	0.0159	0.0143	0.0164	0.015
		排放速率	kg/h	9.13×10 ⁻³	7.96×10 ⁻³	9.53×10 ⁻³	8.87×10-3
	钴及其化合物	实测浓度	mg/m³	0:000230	0.000445	0.000219	0.000298

报告编号: HJ202208075

第 19 页 共 43 页

	管道	名称		管道形状	烟道截面 (m²)	管道高	度 (m)
监测日期	-5	密尾		圆形	28.0862		30
	监测项目		单位	第一次	第二次	第三次	均值
		折算浓度	mg/m³	0.000234	0.000480	0.000223	0.000312
		排放速率	kg/h	1.35×10 ⁻⁴	2.66×10 ⁻⁴	1.30×10 ⁻⁴	1.77×10
		实测浓度	mg/m³	0.0201	0.0408	0.0174	0.0261
	锰及其化合物	折算浓度	mg/m ³	0.0205	0.044	0.0177	0.0274
		排放速率	kg/h	1.18×10-2	2.44×10-2	1,03 × 10 ⁻²	1.55×10-2
		实测浓度	mg/m³	0.0015	0.0030	0.0015	0.002
	镍及其化合物	折算浓度	mg/m³	0.0015	0.0032	0.0015	0.002
		排放速率	kg/h	0.88×10 ⁻³	1.80×10 ⁻³	0.89×10 ⁻³	1.19×10 ⁻³
		实测浓度	mg/m³	0.00335	0.00257	0.00296	0.00296
	钒及其化合物	折算浓度	mg/m ³	0.00341	0.00277	0.00301	0.00306
		排放速率	kg/h	1.96×10 ⁻³	1.54×10 ⁻³	1.75×10 ⁻³	1.75 × 10 ⁻³
	破、铬、锡、锑、锑、 铜、钴、锰、镍、钒 及其化合物(以	实测浓度	mg/m³	0.05492	0.071657	0.049944	0.05884
		折算浓度	mg/m ³	0.05594	0.077277	0.050869	0.061362
	Be+Cr+Sn+Sb+Cu+C o+Mn+Ni+V 计)	排放速率	kg/h	3.21×10 ⁻²	4.29×10 ⁻³	2,95×10 ⁻²	3.48×10°2
		实测浓度	mg/m³	2,97	3.38	2.56	2.97
	氯化氢	折算浓度	mg/m³	3.03	3.65	2.61	3,10
		排放速率	kg/h	1.74	2.02	1,51	1.76
		实测浓度	mg/m³	0.84	0,56	0.77	0.72
	氟化氢	折算浓度	mg/m³	0.86	0.60	0.78	0.75
		排放速率	kg/h	0.49	0.34	0.46	0,43
	标干流量		m ⁷ /h	587781	588244	576737	584254
	温度		°C	107.8	107,5	107.4	107.6
	湿度		%	9.4	9,4	9.2	9.3
	流速		m/s	9.1	9.1	8.9	9.0
	氧含量		0/0	10.5	10,5	10,3	10.4
	总烃	实测浓度	mg/m³	0.16	0.45	0.08	0.23

报告编号: HJ202208075

第 20 页 共 43 页

	管道名称 —号窑尾			管道形状 圆形	烟道截面 (m²)	管道高度 (m)	
监测日期							
	监测项	单位	第一次	第二次	第三次	均值	
		折算浓度	mg/m ³	0.17	0.47	0.08	0.24
		排放速率	kg/h	0.09	0.26	0.05	0.13
	臭气浓度	实测浓度	7	417	417	741	1
	× 1/1/3	排放速率	kg/h	kg/h /	1	,	1

注: "ND"表示未检出或低于方法检出限;

Tel: 027-83901064

E-mail: whhj_testing@163.com

Web: www.whhitest.com

报告编号: HJ202208075

第 21 页 共 43 贞

表6-2 有组织废气检测结果(二号窑尾)

	管	道名称		管道形状	烟道截面 (m²)	管道高	度 (m)
监测日期		号窑尾		圆形	18.7772		80
	监测项	目	单位	第一次	第二次	第三次	均值
	标干流	量	m³/h	632807	655852	634604	641088
	温度		э.С.	111	112	111	111
	湿度		%	11.2	11.1	11.6	11.3
	流速		m/s	10.0	10.4	10.9	10:4
	氧含量		%	11.2	10.8	10.9	11.0
		实测浓度	mg/m³	10,5	9.8	10.3	10.2
	颗粒物	折算浓度	mg/m ³	11.8	10.6	11,2	11.2
		排放速率	kg/h	6.64	6.43	6.54	6.54
		实测浓度	mg/m ³	38	40	36	38
	二氧化硫	折算浓度	mg/m³	43	43.	39	42.
		排放速率	kg/h	24.1	26,2	22.8	24.4
1		实测浓度	mg/m³	255	263	254	257
	氮氧化物	折算浓度	mg/m³	286	284	277	282
2022年		排放速率	kg/h	161	172	161	165
8月9日	标干流量		m ³ /h	593265	606058	619788	606370
	温度		°C	109	110	110	110
	湿度		%	12.3	12,3	11.8	12.1
	流速	流速		9.5	9.7	9.9	9,7
	氧含量		%	11.2	11.0	10.9	11.0
		实测浓度	mg/m³	0.00035	0.00028	0.00027	0.0003
	汞及其化合物	折算浓度	mg/m³	0.00039	0.00031	0.00029	0.00033
		排放速率	kg/h	2,08×10 ⁻¹	1.70×10 ⁻⁴	1.67×10 ⁻⁴	1.82×10
		实测浓度	mg/m³	3.30	3.62	3.72	3,55
	氨气	折算浓度	mg/m ³	3.70	3.98	4.05	3.91
		排放速率	kg/h	1.96	2.19	2.31	2.15
		实测浓度	mg/m³	0.050	0.042	0.029	0.040
	硫化氢	折算浓度	mg/m³	0.056	0.046	0.032	0.045
		排放速率	kg/h	2.97×10-2	2.54×10 ⁻²	1.80×10-3	2.44×10 ⁻²

Tel: 027-83901064

E-mail: whhj_testing@163.com

Web: www.whhjtest.com

报告编号: HJ202208075

	管	道名称		管道形状	烟道截面 (m²)	管道高	B度 (m)
监测日期	=	号窑尾		圆形	18.7772		80
	监测项	目	单位	第一次	第二次	第三次	均值
	标干流	量	m ⁵ /h	633845	607763	626523	622710
	温度		"C	111	110	111	[1]
	湿度		%	11.7	11,8	11.4	11.6
	流速		m/s	10.1	9.7	10.0	9,9
	氧含量		%	10,7	11.3	10,9	11.0
		实测浓度	mg/m ³	0.00121	0.00233	0.00219	0.00191
	铊及其化合物	折算浓度	mg/m³	0.00129	0.00246	0.00239	0.00205
		排放速率	kg/h	0.77×10 ⁻¹	1.42×10 ⁻³	1.37×10 ⁻³	1.19×10
		实测浓度	mg/m³	0.000034	0.000053	0.000048	0.000045
	镉及其化合物	折算浓度	mg/m³	0.000036	0.000060	0.000052	0.000049
		排放速率	kg/h	2.12×10 ⁶	3.22×10 ⁻⁵	3.01×10-5	2.78×10
		实测浓度	mg/m [†]	0.0036	0.0038	0.0034	0,0036
	铅及其化合物	折算浓度	mg/m ³	0.0038	0.0043	0.0037	0.0039
		排放速率	kg/h	2.28×10 ⁻³	2.31×10 ⁻³	2,13×10-3	2.24×10
		实测浓度	mg/m³	0.0003	0.0007	0.0008	0.0006
	砷及其化合物	折算浓度	mg/m³	0.0003	0.0008	0.0009	0.0007
		排放速率	kg/h	1.90 × 10⁴	4.25×10 ⁻⁴	5.01×10 ⁻¹	3.72 × 10
	铊、镉、铅、砷及	实测浓度	mg/m ⁷	0,005144	0.006883	0.006438	0.006155
1	其化合物(以	折算浓度	mg/m ³	0.005494	0.007805	0.007012	0.00677
	TI+Cd+Pb+As if)	排放速率	kg/h	3,26×10 ⁻³	4.18×10 ⁻³	4,03 × 10 ⁻³	3.82×10°
		实测浓度	mg/m³	0.000044	0.000062	0.000045	0.000050
	铍及其化合物	折算浓度	mg/m ³	0.000047	0.000070	0.000049	0.000055
		排放速率	kg/ħ	2.79×10 ⁻⁵	3.77×10 ⁻⁵	2.82×10-5	3.13×10 ⁻⁵
		实测浓度	mg/m³	0.0262	0.0404	0.0252	0.0306
	铬及其化合物	折算浓度	mg/m³	0.028	0.046	0.027	0.0337
		排放速率	kg/h	1.67×10 ⁻²	2.46×10-2	1.58×10 ⁻²	1.90×10-2
		实测浓度	mg/m ³	0.0016	0.0039	0.0042	0.0032
	锡及其化合物	折算浓度	mg/m ³	0.0017	0.0044	0.0046	0.0036
		排放連率	kg/h	1.01×10 ⁻³	2.37×10 ⁻²	2.63×10 ⁻³	2.00×10 ⁻³

报告编号: HJ202208075

第 23 页 共 43 页

	管道	包容称		管道形状	烟道截面 (m²)	管道高	度 (m)
日期	二	号窑尾		圆形	18,7772		80
	监测项目	1	单位	第一次	第二次	第三次	均值
		实测浓度	mg/m³	0.00045	0.00104	0.00076	0.00075
	锑及其化合物	折算浓度	mg/m ³	0.00048	0.00118	0.00083	0.00083
		排放速率	kg/h	2.85×10 ⁻⁴	6,32×10 ⁻⁴	4.76×10 ⁻¹	4.64×10
		实测浓度	mg/m³	0.0021	0.0267	0.0314	0.0201
	铜及其化合物	折算浓度	mg/m ³	0.0022	0.0303	0.0342	0,0223
		排放速率	kg/h	0.13×10 ⁻²	1.63×10-2	1.97×10 ⁻²	1.24×10
		实测浓度	mg/m ³	0.000251	0.000780	0.000318	0.00045
	钴及其化合物	折算浓度	mg/m ³	0.000268	0.000884	0.000346	0.00050
		排放速率	kg/h	1.59×10 ⁻¹	4.74×10 ⁻⁴	1.99×10 ⁻⁴	2.77×10
		实测浓度	mg/m³	0.00662	0.00946	0.00994	0.00867
	锰及其化合物	折算浓度	mg/m³	0.00707	0.01073	0.01083	0.00954
		排放速率	kg/h	4.19×10-3	5.75×10 ⁻³	6,23×10 ⁻³	5.39×10
		实测浓度	mg/m ³	ND	ND	ND	1
	镍及其化合物	折算浓度	mg/m ³	1	1	1	1
		排放速率	kg/h	Ť	T	1	1
		实测浓度	mg/m³	0,00073	0.00266	0.00328	0.00222
	钒及其化合物	折算浓度	mg/m ³	0.00078	0.00302	0.00357	0.00246
		排放速率	kg/h	0,46×10 ⁻³	1.62×10 ⁻³	2.06×10 ⁻¹	1,38×10
	、铬、锡、锑、锑、	实测浓度	mg/m³	0.037995	0.085002	0.075143	0.066047
	、钴、锰、镍、钒 及其化合物(以	折算浓度	mg/m ³	0.04058	0.09639	0.081839	0.072936
В	e+Cr+Sn+Sb+Cu+ o+Mn+Ni+V i+)	排放速率	kg/h	2.41×10 ⁻²	5.17×10-2	4.71×10²	4.10×10
		实测浓度	mg/m³	4.56	3.91	3.74	4.07
	氯化氢	折算浓度	mg/m³	4.87	4.43	4.07	4.46
		排放速率	kg/h	2.89	2.38	2.34	2.54
		实测浓度	mg/m³	0.66	0.49	0.82	0.66
	氟化氢	折算浓度	mg/m ¹	0.70	0.56	0.89	0.72
		排放速率	kg/h	0.418	0,298	0.514	0.41
	标干流量		m³/h	617922	609967	631183	619691

Tel: 027-83901064

E-mail: whbj testing/a 163,com

Web: www.whhitest.com

第 24 页 共 43 页

	9	管道名称		管道形状	烟道截面 (m²)	管道高	度 (m)
监测日期		二号窑尾		圆形	18.7772		80
	监测巧	页目	单位	第一次	第二次	第三次	均值
	温度	廷	°C	108	109	111	109
	湿度	E	%	12.3	12.6	11.5	12.1
	流道	巷	m/s	9.8	9.8	10.0	9,9
	氧含	量	%	11.0	11.0	10.7	10.9
		实测浓度	mg/m³	10.8	9.43	5.38	8.54
	总烃	折算浓度	mg/m³	11.9	10.4	5.74	9.35
		排放速率	kg/h	6,67	5.75	3.40	5.27
- 1	臭气浓度	实测浓度	1	407	550	550	1
	JC VINIX	排放速率	kg/h	-1-	1	1	1
	标干流	是量	m³/h	586420	577799	596779	586999
	温度		°C	170	170	171	170
	湿度		%	9.6	9.5	9.3	9,5
	流速		m/s	10.5	10.4	10.7	10.5
	氧含	量	%	9.9	9.8	10,1	9.9
1	颗粒物	实测浓度	mg/m³	11,2	11.6	11.5	11.4
1		折算浓度	mg/m³	11.1	11.4	11.6	11,4
		排放速率	kg/h	6,57	6.70	6.86	6.71
		实测浓度	mg/m³	54	52	49	52
2022年	二氧化硫	折算浓度	mg/m³	54	51	49	51
8月10日		排放速率	kg/h	31.7	30.0	29.2	30.3
		实测浓度	mg/m ³	270	274	273	272
	氮氧化物	折算浓度	mg/m³	268	269	276	271
		排放速率	kg/h	158	158	163	160
	标干流	물	m³/h	650285	616093	658733	641704
	温度		°C	108	107	108	108
	湿度		%	11,1	11.5	11.2	11.3
	流速		m/s	10.2	9.7	10.4	10.1
	氧含量		%	10.8	10.7	10.7	10.7
	汞及其化合物	实测浓度	mg/m³	0.00016	0.00019	0.00017	0,00017

Tel: 027-83901064

E-mail: whhj testing@163.com

Web: www.whbjtest.com

报告编号: HJ202208075

第 25 页 共 43 页

	管	首名称		管道形状	烟道截面 (m²)	管道高	度 (m)
监测日期	7	号窑尾		圆形	18.7772		80
	监测项	I	单位	第一次	第二次	第三次	均值
		折算浓度	mg/m³	0.00017	0.00020	0.00018	0.00018
		排放速率	kg/h	1.04×10 ⁻¹	1.17×10+	1.12×10-1	1.11×10
		实测浓度	mg/m ³	6.74	6.94	6.88	7.08
	氨气	折算浓度	mg/m ³	7.27	7.41	7.35	7,34
		排放速率	kg/h	4.83	4,28	4.53	4.55
		实测浓度	mg/m³	0.033	0.026	0.047	0.035
	硫化氫	折算浓度	mg/m³	0.036	0.028	0.050	0.038
		排放速率	kg/h	2.15×10 ⁻²	1.60×10 ⁻²	3.10×10-2	2.28×10
	标干流量	t	m ¹ /h	593750	605727	627435	608971
	温度		°C	106	107	108	107
	湿度		0/0	11.8	11.4	11,2	11.5
	流速		m/s	9,4	9.5	9,9	9.6
	氧含量		0/6	11.4	11.0	10.8	11.1
		实测浓度	mg/m³	0.00110	0.00214	0,00157	0.00160
	铊及其化合物	实测浓度	mg/in ³	0,00126	0.00235	0.00169	0.00177
		排放速率	kg/Ji	0.65×10 ⁻³	1.30×10 ⁻³	0.99×10 ⁻³	0.98×10
		实测浓度	mg/m²	0.000017	0.000015	0.000010	0.000014
	镉及其化合物	实测浓度	mg/m ³	0.000019	0.000017	0.000011	0.000016
		排放速率	kg/h	1.01×10-5	0.91×10-5	0.63×10-5	0.85×10
		实测浓度	mg/m³	0.0025	0.0035	0.0028	0.0029
	铅及其化合物	实测浓度	mg/m³	0.0029	0.0039	0.0031	0.0033
		排放速率	kg/h	1,48×10 ⁻³	2.12×10 ⁻³	1.76×10 ⁻³	1.79×10 ⁻³
		实测浓度	mg/m³	0.0005	0.0008	0.0006	0.0006
	砷及其化合物	实测浓度	mg/m ³	0.0006	0.0009	0.0006	0.0007
		排放速率	kg/h	2.97×10→	4.85×10⁴	3.77×10→	3.86×10 ⁻⁴
	铊、镉、铅、砷及	实测浓度	mg/m³	0.004117	0.006455	0.004980	0.005184
	其化合物(以	折算浓度	mg/m ³	0.004717	0.007101	0.005371	0.005730
	11+Cd+Pb-As i+)	排放速率	kg/h	2,44 × 10 ⁻⁷	3.91×10 ⁻³	3.12×10 ⁻⁵	3.16×10 ⁻³
	铍及其化合物	实测浓度	mg/m ³	0.000055	0,000071	0.000106	0.000077

报告编号: HJ202208075

	管法	道名称		管道形状	烟道截面 (m²)	管道高	度 (m)
测日期	=	号窑尾		圆形	18.7772		80
	监测项	目	单位	第一次	第二次	第三次	均值
		实测浓度	mg/m³	0,000063	0.000078	0.000114	0.000085
		排放速率	kg/h	3.27×10 ⁻⁵	4.30×10 ⁻⁵	6.65×10 ⁻⁵	4.74×10
		实测浓度	mg/m³	0.0119	0.0204	0.0176	0.0166
	铬及其化合物	实测浓度	mg/m ³	0.0136	0.0224	0.0190	0.0183
		排放速率	kg/h	0,71×10≥	1.23 × 10 ⁻¹	1,10×10-2	1.01×10
		实测浓度	mg/m ³	0.0018	0.0028	0.0024	0.0023
	锡及其化合物	实测浓度	mg/m³	0.0021	0.0031	0.0026	0.0026
		排放速率	kg/h	1.07×10 ⁻³	1.70×10 ⁻³	1.51×10 ⁻³	1.43×10
		实测浓度	mg/m³	1,0000.0	0.00037	0.00033	0.00054
	锑及其化合物	实测浓度	mg/m³	0.00104	0.00041	0.00036	0.00060
		排放速率	kg/h	5.40×10 ⁻¹	2.24×10-4	2.07×10 ⁻⁴	3.24×10
		实测浓度	mg/m ²	0.0025	0,0029	0,0031	0.0028
	铜及其化合物	实测浓度	mg/m³	0.0029	0.0032	0,0033	0.0031
		排放速率	kg/h	1.48×10 ⁻³	1.76×10 ⁻³	1.95×10 ⁻³	1.73×10-3
		实测浓度	mg/m³	0.000129	0.000209	0.000155	0.000164
	钴及其化合物	实测浓度	mg/m³	0.000148	0.000230	0.000167	0.000182
		排放速率	kg/h	0.77×10 ⁻⁴	1.27×10-4	0.97×10 ⁻⁴	1.00×10 ⁻¹
		实测浓度	mg/m³	0.00590	0.00687	0.00748	0.00675
	锰及其化合物	实测浓度	mg/m³	0.00676	0,00756	0.00807	0.00746
1		排放速率	kg/h	3.50×10 ⁻³	4.16×10 ⁻³	4.69×10 ⁻³	4.12×10₹
		实测浓度	mg/m³	0.0035	0,0074	0.0046	0.0052
	镍及其化合物	实测浓度	mg/m ³	0.0040	0.0081	0.0047	0.0056
		排放速率	kg/h	2.08×10 ⁻³	4.48×10 ⁻³	2.89×10 ⁻³	3,15×10 ⁻³
		实测浓度	mg/m³	0.00220	0.00378	0.00320	0.00306
	钒及其化合物	实测浓度	mg/m ³	0.00252	0.00416	0.00345	0.00338
		排放速率	kg/h	1,31×10 ⁻¹	2,29×10°	2.01×10 ⁻³	1.87×10-1
	皮、铬、锡、锑、锑、	实测浓度	mg/m³	0.028894	0,04480	0.038971	0.037555
Ť	阿、钴、锰、镍、钒	折算浓度	mg/m³	0.033108	0.04928	0.042028	0.041472

报告编号: HJ202208075

第 27 页 共 43 页

	管道	名称		管道形状	烟道截面 (m²)	管道高	度 (m)
监测日期	二号	密尾		圆形	18.7772	80	
	监测项目		单位	第一次		第三次	均值
	及其化合物(以 Be+Cr+Sn+Sb+Cu+ Co+Mn+Ni+V 计)	排放速率	kg/h	1.72×10 ⁻²	2.71×10 ⁻²	2.45×10 ⁻²	2.29×10-
		实测浓度	mg/m ³	2.71	2.87	7.93	4.50
	氯化氢	折算浓度	mg/m³	3.11	3.16	8.55	4.94
		排放速率	kg/h	1.61	1.74	4.98	2.78
		实测浓度	mg/m³	0.81	0.73	0.86	0.80
	氟化氢	折算浓度	mg/m ³	0.93	0.80	0.93	0.89
		排放速率	kg/h	0.481	0.442	0.540	0.488
	标干流量		m³/h	581190	581190	594187	585522
	温度		°C	170	169	170	170
	湿度		%	9.7	9.8	9.8	9.8
	流速		m/s	10.4	10.4	10,7	10.5
	氧含量		%	9.7	10.2	9,9	9.9
		实测浓度	mg/m³	0.08	0.29	ND (0.07)	1
	总烃	折算浓度	mg/m ³	80.0	0.30	/	1
		排放速率	kg/h	0.046	0.169	7	7
	臭气浓度	实测浓度	1	741	550	741	1
	> VAIR	排放速率	kg/h	1	7	1	J

注: "ND"表示未检出或低于方法检出限;

6.2 无组织废气

厂界无组织废气监测结果见表 6-3, 监测期间气象参数见表 6-4:

表 6-3 无组织废气监测结果一览表

采样日期 检测项目			检测结果(单位: mg/m³, 臭气浓度无量纲)							
	频次	●1 上风向厂 界外 20m	●2 下风向厂 界外 5m	●3 下风向厂 界外 5m	●4 下风向厂 界外 5m	最大值				
2022年	颗粒物	1	0.350	0.384	0.434	0.400	0.434			
8月10日	4842170	2	0.367	0.417	0.417	0.384	0.417			

Tel: 027-83901064

E-mail: whhj testing@163.com

Web: www.whhjtest.com

报告编号: HJ202208075

第 28 页 共 43 页

m III m II		Paul S		检测结果(单	位: mg/m³, 臭	气浓度无量纲)	
采样日其	用 检测项目	频次	●1 上风向厂 界外 20m	●2 下风向厂 界外 5m		●4 下风向厂 界外 5m	最大值
		3	0.350	0.400	0.451	0.417	0.451
		1	0.14	0.24	0.22	0.22	0.24
	氨气	2	0.15	0.23	0.23	0.20	0.23
		3	0.14	0.28	0.23	0.30	0.3
		1	0.003	0.003	0.002	0.002	0,003
	硫化氢	2	0.002	0.002	0.011	0.003	0.011
		3	0.002	0.003	0.004	0.002	0.004
		1	0.10	0.14	0.08	0.07	0.14
	非甲烷总烃	2	0.10	0.08	0.10	0.09	0.1
		3	0.10	0.12	0.09	ND (0.07)	0.12
		1	<10	<10	<10	<10	1
	臭气浓度	2	<10	<10	<10	<10	7
		3	<10	<10	<10	<10	1
		1	0.384	0.400	0.450	0.467	0.467
	颗粒物	2	0.367	0.434	0.417	0.417	0.434
		3	0.350	0,417	0.434	0.451	0.451
		1	0.14	0.24	0.20	0.24	0.24
	氨气	2	0.13	0.23	0.22	0.23	0.23
		3	0.14	0.26	0.21	0.25	0.26
2022年		1	0.002	0.003	0.003	0.003	0.003
月11日	硫化氢	2	0.003	0.002	0.003	0.003	0.003
		3	0.002	0.002	0.004	0,003	0.004
		1	0.11	0.11	0.08	ND (0,07)	0.11
	非甲烷总烃	2	0.09	0.12	ND (0.07)	0.07	0.12
		3	0.10	ND (0.07)	0.07	0.15	0.15
		i	<10	<10	<10	<10	1
	臭气浓度	2	<10	<10	<10	<10	1
		3	<10	<10	<10	<10	1

报告编号: HJ202208075

第 29 页 共 43 页

注: "ND"表示未检出或低于方法检出限

表 6-4 监测期间气象参数测试一览表

时间	天气	气温 (℃)	气压 (kpa)	风向	风速 (m/s)
	晴	38	100.4	东北	2.0
2022年8月10日	晴	39	100.4	东北	2.0
	時	39	100.4	东北	2.0
	晴	33	100.3	东北	2.7
2022年8月11日	晴	35	100.3	东北	2.7
	晴	38	100.3	东北	2.7

Tel: 027-83901064

E-mail: whhj_testing@163.com

Web: www.whhjtest.com

报告编号: HJ202208075

第 30 页 共 43 页

6.3 噪声

噪声监测结果见表 6-5:

表 6-5 噪声监测结果

佐納 口 日	ぬロ	Heave to the	监测点位	测量值	[dB(A)]
监测日期	编号	监测点位置	GPS 坐标	昼间 (06:00-22:00)	夜间 (22:00-06:00)
	A 1	厂界东侧	E: 115°16'44" N: 30°07'01"	47.9	45.2
2022年	▲2	厂界南侧	E: 115°16′24" N: 30°06′45"	57.4	52.4
8月9日	▲3	厂界西侧	E: 115°16′17" N: 30°06′53"	60.4	54.3
	▲4	厂界北侧	E: 115°56'26" N: 30°06'59"	59.2	53.7
	A 1	厂界东侧	E: 115°16'44" N: 30°07'01"	47.6	45.5
2022年	▲2	厂界南侧	E: 115°16′24″ N: 30°06′45″	57.5	53.6
月10日	▲3	厂界西侧	E: 115°16′17" N: 30°06′53"	60.7	54.2
	▲4	厂界北侧	E: 115°56′26″ N: 30°06′59″	59.5	53.3

报告编号: HJ202208075

第 31 页 共 43 页

6.4 环境空气

环境空气检测结果见表 6-6~6-7, 监测期间气象情况见表 6-8:

表 6-6 环境空气监测结果 [单位, mg/m3]

监测点位	采样日期	检测项目		检测结果	(小时值)	
III./X/AII Jac	水平口粉	世別坝日	第一次	第二次	第三次	第四次
		二氧化硫	0.003	0.003	0.003	0.003
		二氧化氮	0.019	0.015	0.014	0.010
		氯化氢	0.034	0.028	0.041	0.033
	2022年 8月9日	非甲烷总烃	ND (0.07)	0.20	ND (0.07)	ND (0.07)
	677 H	硫化氢	0.006	0.003	0.004	0.004
		氨气	0.18	0.14	0.11	0.15
01 冯坳		氟化物 (μg/m³)	0.9	1.1	0,9	1.0
上		二氧化硫	0,003	0.003	0.003	0.004
		二氧化氦	0.024	0.022	0.020	0.011
		氯化氢	0.038	0.032	0.043	0.022
	2022年8月10日	非甲烷总烃	ND (0.07)	0.18	0.13	ND (0.07)
	0 11 10 Ц	硫化氢	0.004	0.007	0.004	0.003
		氨气	0.13	0.15	0.12	0.17
		氟化物 (μg/m³)	0.7	0.9	0.9	0.8

注: 1."ND"表示未检出或低于方法检出限

Tel: 027-83901064

E-mail: whhj_testing@163.com

Web: www.whhjtest.com

报告编号: HJ202208075

第 32 页 共 43 页

表 6-7 环境空气监测结果 [单位: mg/m3]

监测点位	采样日期	检测项目	检测结果(日均值)
		二氧化硫	0.002
		二氧化氮	0.018
		TSP	0.063
		氟化物 (μg/m³)	0.89
	2022年8月9日	镉(µg/m³)	ND (0,004)
		铅 (µg/m³)	0.037
		砷	ND (1.2×10 ⁻⁵)
		六价铬	ND
○1 冯坳上		汞 (μg/m³)	ND
		二氧化硫	0.002
		二氧化氮	0.003
	2022年8月10日	TSP	0.056
		氟化物 (μg/m³)	0.85
		镉(μg/m³)	ND (0.004)
		铅(µg/m³)	0.042
		砷	ND (1.2×10 ⁻⁵)
		六价铬	ND
		汞 (μg/m³)	ND

注: 1."ND"表示未检出或低于方法检出限

报告编号: HJ202208075

第 33 页 共 43 页

表 6-8 监测期间气象参数测试一览表

时间	天气	气温 (℃)	气压 (kpa)	风向	风速 (m/s)
	晴	29	100.3	东北	2.0
2022年8月9日	啃	32	100.3	东北	2.0
	晴	38	100.2	东北	2.1
	晴	33	100.2	东北	2.1
	晴	29	100.4	东北	2.0
2022年8月10日 -	晴	32	100.3	东北	2.1
	晴	38	100.4	东北	2.0
	啃	33	100.4	东北	2.0

Tel: 027-83901064

E-mail: whhj_testing@163.com

Web: www.whhitest.com

第 34 页 共 24 页

6.5 地下水

地下水检测结果见表 6-9;

电子图像水上图 6-9 电子中间性电

检测项目							極沙	检测结果						
	单位			2022年8月9日	月6日					2022年8	2022年8月10日			
		☆1 厂区地下水监测井	下水监测井	公2万	公2 厂区上游	43万	公3万区下游	公1 厂区地	公1 厂区地下水临测井	☆2 \	公2 厂区上游	43	公3 厂区工游	- 标准限值
		第1次	第2次	第1次	第2次	第1次	第2次	第1次	第2次	第1次	年の次	長1.概	表で類	_
水位	m	2.61	2.65	2.91	2.98	2,33	2.37	2.57	264	2 63	200	K	★	
钠离子	mg/L	10.1	13.3	24.8	24.3	8 04	613	11.0	1000	7.00	7.07	7.04	2.19	
無外	Il second					100	21.0	13.2	12.3	25.4	24.7	9.01	9.33	200
1 (2) 1	mg/L	2.94	3.23	3.64	3.78	1.75	1.57	3.19	3.51	3.65	4.07	1.92	2.04	1
钙离子	mg/L	24.6	49.7	30.1	33.6	49.9	42.8	41.4	29.9	32.4	33.7	000		
镁离子	mg/L	6.62	6.70	10.6	8.95	6.51	6 37	6.00	0,00	0,0	1 20	0.00	4:04	,
不產解經濟	I/om	0	c					0000	2.07	0.30	1.85	7.05	6.97	
C for the last of	IIIS/II		6	01	12	6	6	12	15	6	12	12	14	1
碳酸氢根离子	mg/L	181	171	208	176	211	202	177	179	190	161	188	10.6	-
氣离子	mg/L	17.7	16.4	28.1	28.1	15.2	14.6	17.1	15.0	37.8	286	15.7	061	
硫酸根离子	mg/L	50.8	53.8	32.1	31.9	56.3	53.5	50.2	49.8	33.7	23.3	55.4	13.3	
Hd	7	7.3	7.3	7.4	7.3	7.2	7.2	7.3	7.3	7.0	4	23.4	935.9	9
剣剣	mg/L.	0.053	0.059	0.064	0.053	0.028	0.036	0.056	0.048	0.14	6.78	\$500	7.4	6.5-8.5

第55页共24页

							极沙	检测结果						
田四原舜	華伟			2022年8月9日	日6日					2022年8月10日	月10日			
T X	1	公1厂区地下水临测井	下水监测井	☆2万	公2 厂区上游	43万	公3 厂区下游	☆1 厂区堆	公1 厂区地下水临测井	公2万	公2 厂区上游	公3万	公3厂区下游	一标准阅值
		第一次	第2次	第1次	第2次	※一米	第2次	第1次	第2次	第一次	第2次	第1次	第2次	
硝酸盐	mg/L	0.19	0.11	1,62	0.62	1.18	1.59	89.0	0.51	1.29	0.51	1.64	86.0	90
亚硝酸盐	mg/L	0.018	0.029	0.028	810.0	0.007	0.032	0.009	900'0	0.060	0.014	0.028	0.009	1.0
挥发酚	mg/L	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0,0003	0.0003	0.0003	0.0003	2000
氰化物	mg/L	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.005
摩	ng/L	0.3	0.3	4.6	4.4	3.7	0.3	0.3	0.3	4.1	45	0.3	0.3	0.01ms/l
来	J/Sri	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.001me/T
六价格	mg/L.	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	1/0m200
总硬度	mg/L	210	991	158	171	215	223	173	171	165	191	192	210	450
铅	Hg/L	1.0	1:0	0.1	1.0	1.0	2.1	0,1	0.1	1.0	1.0	1.0	1.0	0.01mo/l
大國軍	mg/L	0.289	0,310	0.210	0.218	0.023	0.029	0.339	0.335	0.229	0,247	0.048	0.092	0
噩	µg/L	0.10	0.10	0.10	0.10	4.91	4.72	01.0	0.10	0.10	0.10	4.70	4 83	0.005ma/l
絲	mg/L	0.03	0.03	0.03	0.03	60'03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.3
雄	mg/L	0.01	10.0	10.0	0.01	10:0	0.01	10'0	0.01	0.01	0.01	0.01	0.01	10
溶解性总固体	mg/L	229	228	240	250	270	17.5	229	228	250	252	290	289	1000
高锰酸盐指数	mg/L	1.3	1,4	ri	2.0	1.5	1.5	53	13	2.0	0 1	9	4	3.0

W. ...

Web: www.whhitest.com

检测报告

100	*
3.8	77
+	K
191	3
36	2
15	P.

							極沙	检测结果						
田坦原磐	单位			2022 年	2022年8月9日					2022年8	2022年8月10日			
		☆1 / 区地	公1 厂区地下水监测井	☆2 [公2 厂区上游	公3.	公3 厂区下游	拉1万区	台1 厂区地下水监测井	公2万	公2 厂区上游	☆37	公3 厂区下游	标准限值
		第1次	第2次	第1次	第2次	第1次	第2次	第一次	第2次	第1次	第2次	第1次	第2次	
总大肠菌群	CUF/100mL	0	0	0	0	2.8	2.9	0	0	-	-	2.9	27	3.0
细菌总数	CUF/mL	92	38	25	33	86	66	95	35	28	34	86	0.0	2001
部部	mg/L	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0 004	30
掛	mg/L	0.02	0.02	0.02	0.02	0,36	0,24	0.02	0.02	0.02	0.02	0.14	51.0	0.1
鍛	mg/L	ND (0.0002)	ND (0.0002)	ND (0.0002)	ND (0,0002)	ND (0,0002)	ND (0.0007)	ND (50000)	ND (0,0002)	ND	QN S	ND	QN	0.000
鍋	mg/L	ND (0.04)	ND (0,04)	ND (0.04)	-	ND (0.04)	Z	ND (0.04)	ND (0.04)	ND (0.04)	ND (0.04)	ND (0.04)	(0,0002)	-
豿	mg/L	0.47	0.51	99.0	0.55	68.0	0.85	0.42	0.38	0.73	0.60	0.47	0.51	- 0
转	mg/L	ND (0,0025)	ND (0.0025)	ND (0.0025)	ND (0.0025)	ND (0.0025)	ND 00000	ND (\$200.0)	ND (0,0025)	QN ON	ND	Q	QN	0.05
弧	mg/L	ND (0,007)	(0.007)	(0.007)	ND (0.007)	ND (0.007)	ND (0.007)	ND (0.007)	ND (0,007)	ND (0.007)	ND (10,007)	ND (50,0025)	(0.0025) ND	0.02
鈪	mg/L	ND (0,005)	(0.005)	ND (0.005)	ND (0.005)	ND (0.005)	ND (0.005)	ND (0.005)	ND (0.005)	ND	ON O	ND	OND Space	-

报告编号: HJ202208075

第 37 页 共 43 页

6.6 土壤

土壤监测结果见表 6-10:

		检测结果	
		2022年8月10日	
监测项目	□1 厂内窑尾附近(可根据 实际情况调整)	口2 冯坳上	口23厂区南侧居民点
	0.2m	0.2m	0.2m
汞 (mg/kg)	0.223	0.369	1.08
铊 (mg/kg)	0.8	0.9	0.8
镉(mg/kg)	0.06	0.56	1.46
铅(mg/kg)	25.5	189	375
砷 (mg/kg)	16.8	18.6	17.3
铍 (mg/kg)	2.06	2.49	3.98
铬 (mg/kg)	66	58	54
锑(mg/kg)	0.69	4.58	7.72
铜(mg/kg)	26	81	107
钴 (mg/kg)	18.3	19.8	18.8
锰(mg/kg)	595	810	2.01×10 ³
镍(mg/kg)	26	94	85
钒(mg/kg)	89.3	158	147

注: "ND"表示未检出或低于方法检出限

拟告编号: HJ202208075

第 38 页 段 43 页

7、质量控制结果

7.1 水样质量控制结果

水样质量控制结果见表 7-1~表 7-5:

表 7-1 地下水水质监测居终结用

监测项目	全程序 空白	检出限	评价	地下水水质监测质控结果 平行样品 测定浓度	平行双样相对偏差	平行双样相对偏差允许限值	评价
氮氮	ND	0.025 mg/L	合格	0.034 mg/L s 0.037mg/L	4.2%	≤20%	合格
-11/11/	ND	0.025 mg/L	合格	0.042 mg/L . 0.042 mg/L	0	≤20°6	合格
高锰酸盐指数	ND	0,5 mg/L	合格	1,5 mg/L, 1.5 mg/L	0	≤20%	合格
7	ND	0.5 mg/L	合格	1.5 mg/L v 1.5 mg/L	0	≤20%	合格
氰化物	ND	0.004 mg/L	合格	ND (0.004) A ND (0.004)	1)	- Tu
411414	ND.	0.004 ing/L	合格	ND (0.004) , ND (0.004)	1	1	7
砷	ND	0.0003mg/L	合格	ND (0.0003) , ND (0.0003)	7	1	1
a-p	ND	0.0003mg/L.	合格	ND (0.0003) , ND (0.0003)	r	,	1
铜	ND	0.001mg/L	合格	0.0032mg/L, 0.0015mg/L	1.5%	≤15%	合格
172	ND	0.001mg/L	合格	0.0028mg/L , 0.0027mg/L	1.8%	<15% ≤15%	合格
蜂	ND	0.02 mg/L	合格	0.242mg/L, 0.242 mg/L	0	<15% ≤15%	合格
**	ND	0,02 mg/L	合格	0.145mg/L. \ 0.147mg/L	0.7%	≤15%	
总铬	ND	0.004 mg/L	合格	ND (0.004) , ND (0.004)	1	/ / /	合格
(C-10	ND	0.004 mg/L	合格	ND (0.004) , ND (0.004)		/	1
心石 神可	ND	0.0001 mg/L	合格	0.00627 mg/L v 0.00582 mg/L	3.7%	≤10%	A+0
W-C	ND	0.0001 mg/L	合格	0.00656 mg/L v 0.0067 mg/L	1.1%	≤10%	合格
硝酸盐	ND	0.08 mg/L	合格	1.59 mg/L , 1.59mg/L	0	≤10% ≤10%	合格
уних шт	ND	0.08 mg/L	合格	0.98mg/L, 0,98mg/L	0	<10% ≤10%	合格
亚硝酸盐	ND	0.003 mg/L	合格	0.033mg/L v 0.032mg/L	1.5%	<15%	合格
TT PHINK III	ND	0.003 mg/L	合格	0.009mg/L, 0.009mg/L	0		合格
挥发酚	ND	0.0003 mg/L	合格	ND (0.0003) , ND (0.0003)	1	≤15%	合格
1年及即	ND	0.0003 mg/L	合格	ND (0.0003) , ND (0.0003)	1	-	1
汞	ND	0.04 µg/L	合格	ND (4×10 ⁻⁵) , ND (4×10 ⁻⁵)	1	*	-
7K	ND	0.04 µg/L	合格	ND (4×10 ⁻⁵) , ND (4×10 ⁻⁵)	1		1
ėn	ND	0.001 mg/L	合格	0.0021mg/L, 0.0021mg/L	0	71.00	/-
铅	ND	0.001 mg/L	合格	0.001mg/L, 0.001mg/L		-	合格
tol-	ND	0,03 mg/L	合格	ND (0.03) , ND (0.03)	0.	≤15%	合格
铁	ND	0.03 mg/L	合格	ND (0.03) , ND (0.03)	-/	/	7

Tel: 027-83901064

F-mail: whhi testing a 163 com

Web: www.whhitest.com

报告编号: HJ202208075

第 39 页 具 43 页

监测项目	全程序空白	检出限	评价	平行样品 测定浓度	平行双样相对偏差	平行双样相对偏差允许限值	评价
锰	ND	0.01 mg/L	合格	ND (0.01) , ND (0.01)	1	1	1
Sent.	ND	0.01 mg/L	合格	ND (0.01) , ND (0.01)	1	1	1
六价铬	ND	0,004 mg/L	合格	ND (0.004) , ND (0.004)	1	1	1
- X I M I FR	ND	0.004 mg/L	合格	ND (0.004) , ND (0.004)	7	1	1
镍	ND	0.007 mg/L	合格	ND (0.007) , ND (0.007)	7	1	7
175-	ND	0.007 mg/L	合格	ND (0.007) , ND (0.007)	1	1	,
总硬度	ND	0.05 mmol/L	合格	2.22mmol/L 2.24mmol/L	0.45%	≤8%	合格
心灰皮	ND	0.05.mmol/L	合格	2.09mmol/L . 2.11mmol/L	0.485%	≪8%	合格
钠离子	ND	0.02 mg/L	合格	8,470 mg/L. 7.761 mg/L	4.37%	≤10%	合格
\$13(E) 1	ND	0.02 mg/L	合格	9.087 mg/L _v 9.575 mg/L	2.61%	≤10%	合格
钾离子	ND	0.02 mg/L	合格	1,605 mg/L v 1.542 mg/L	2.00%	≤10%	合格
4T #41 J	ND	0.02 mg/L	合格	2.170 mg/L v 1.902 mg/L	6.58%	≤10%	合格
镁离子	ND	0.02 mg/L	合格	6.546 mg/L v 6.203 mg/L	2.69%	≤10%	合格
(Acted)	ND	0.02 mg/L	合格	6.907 mg/L v 7,036 mg/L	0.93%	≤10%	合格
钙离子	ND	0.03mg/L	合格	43.18 mg/L _v 42.37 mg/L	0.95	≤10%	合枪
23tt0 1	ND	0.03 mg/L	合格	43.12 mg/L, 43,66 mg/L	0.62%	≤10%	合格
氟离子	ND	0.006mg/L	合格	0.0287 mg/L v 0.0288 mg/L	0.2%	≤10%	合格
Service 1	ND	0.006mg/L	合格	0.0913 mg/L v 0.0924 mg/L	0.6%	≤10%	合格
氯离子	ND	0.007mg/L	合格	17.88 mg/L v 17.61 mg/L	0.8%	≤10%	合格
381/20 1	ND	0.007mg/L	合格	15,37 mg/L v 15,22 mg/L	0.5%	≤10%	合格
流酸根离子	ND	0.018mg/L	合格	51.10 mg/L , 50.57 mg/L	0.5%	≤10%	合格
州政政政政	ND	0.018mg/L	合格	55.83 mg/L , 56.02 mg/L	0.2%	≤10% ≤10%	合格

^{3、&}quot;ND"表示检测结果低于分析方法检出限,方法检出限见表 4-1。

第 40 页 共 43 页

表 7-2 地下水水质监测质控结果

检测项目		加标回4	女分析	
IZW-X EI	分析编号	回收率 (%)	允许回收率(%)	结果评判
夏夏	HJ22080109-1-7-1 加标	100	90~110	符合要求
3.13(1	HJ22080109-1-2-1 加标	100	90~110	符合要求
硝酸盐	空白加标	100	85~115	符合要求
N76XAII	空白加标	100	85~115	符合要求
正硝酸盐	空白加标	102	85~115	符合要求
- Prinking	空白加标	102	85~115	符合要求
六价铬	空白加标	95.0	90~110	符合要求
- Sering	空白加标	95.0	90~110	符合要求
氰化物	空白加标	92.0	85~115	符合要求
HOLOTO	空白加标	92.0	85~115	符合要求
总硬度	空白加标	98,0	90~110	符合要求
15, 10, 15	空白加标	98.0	90~110	符合要求
总铬	空白加标	95.0	85~115	符合要求
TIGHT PRO	空白加棕	95.0	85~115	符合要求
挥发酚	空白加标	100	85~115	符合要求
7-5CB//	空白加标	100	85~115	符合要求
	空白加标	95.0	70~130	符合要求
汞	空白加标	96.7	70~130	符合要求
-24	空白加标	95.0	70~130	符合要求
	空白加标	96.7	70~130	符合要求
	空白加标	108	70~130	符合要求
砷	空白加标	105	70~130	符合要求
101	空白加标	гов	70~130	符合要求
	空白加标	105	70~130	符合要求
辐	空白加标	102	85~115	符合要求
	空白加标	102	85~115	符合要求
铅	空白加标	104	85~115	符合要求
	空白加标	104	85~115	符合要求
铜	空白加标	99.6	85~115	符合要求
77	空白加标	99.6	85~115	符合要求
锌	空白加标	100	85~(20	符合要求
	空自加标	100	85~120	符合要求
镍	空白加标	103	90~110	符合要求
770	空白加标	1.03	90~110	符合要求

报告编号: HJ202208075

第 41 页 共 43 页

检测项目 —	加标回收分析						
THE PARTY CO.	分析编号	回收率 (%)	允许回收率(%)	结果评判			
铁	空白加标	90.6	85~115	符合要求			
**	空白加标	90.6	85~115	符合要求			
锰	空白加标	95.3	85~115	符合要求			
-	空白加标	95.3	85~115	符合要求			
钠离子	空白加标	97,0	80~120	符合要求			
10 J	空白加标	97,0	80~120	符合要求			
钾离子	空白加标	101	80~120	符合要求			
41164.3	空白加标	101	80~120	符合要求			
镁离子	空白加标	98.1	80~120	符合要求			
ocied 1	空白加标	98.1	80~120	符合要求			
钙商子	空白加标	99.2	80~120	符合要求			
5.7(m) 1	空白加标	99.2	80~120	符合要求			
氪离子	空白加标	97.2	80~120	符合要求			
Spelled 7	空白加标	97,2	80~120	符合要求			
氯离子	空白加标	90.5	80~120	符合要求			
450000	空白加标	90.5	80~120	符合要求			
酸根离子 —	空白加标	91.2	80~120	符合要求			
Bex (K)(e) 1	空白加标	91.2	80~120	符合要求			

表 7-3 地下水平行样检测结果统计表

样品 类型	检测项目	实验室编号	样品结果	平行结果	样品相对偏 差(%)	允许相对偏 差(%)	评价
地下水	碳酸根(mg/L)	11J22080109- 2-9-2	13	15	7.1	10	合格
	碳酸氢根(mg/L)	HJ22080109- 2-9-2	200	192	2.0	10	合格
	锡 (mg/L)	HJ22080109- 2-9-2	ND (0.04)	ND (0.04)	0.0	25	合格

表 7-4 地下水有证标准样品分析检测结果统计表

样品类型	检测项目	标样编号	检测结果	标准值	评价
地下水	彼 (mg/L)	220616JS22D51184	0.388	0.401 ± 0.020	合格
	锡 (mg/L)	210413JSB2102078	1.91	1.95 ± 0.12	合格
	钴 (mg/L.)	210623JSB2007076	0.306	0.295 ± 0.013	合格
	钒 (mg/L)	201105JS203509	0.305	0.294 ± 0.015	合格

Tel: 027-83901064

E-mail: whhj testing it 163.com

Web: www.whhitest.com

第 42 页 共 43 页

表 7-5 地下水标准曲线验证结果统计表

样品类型	检测项目	标准曲线中间点浓度相对误差(%)	允许相对误差(%)	评价
	铍	5.2	10	合格
地下水 钴	0.0	10	合格	
	钴	7.5	10	合格
	钒	9.5	10	合格

7.2 气样质量控制结果

气样质量控制结果见表 7-6~表 7-11:

表 7-6 有组织废气监测质控结果

检测项目		加标回收分析					
120	-XH	分析编号	回收率 (%)	允许回收率(%)	结果评判		
	氨气	空白加标	101	97~103	符合要求		
	20. 1	空白加标	101	97~103	符合要求		
	硫化氢 -	空白加标	97,9	97.7~100.3	符合要求		
	77-14-23	空白加标	97,9	97.7~100.3	符合要求		
有组织废气	汞及其化合	空白加标	113	70~130	符合要求		
The second	4勿	空白加标	113	70~130	符合要求		
	氯化氢	空白加标	92.7	90~110	符合要求		
	36 FL 52)	空白加标	92.7	90~110	符合要求		
	氟化氢	空白加标	99.0	90~110	符合要求		
	馬化司	空白加标	99.0	90~110	符合要求		

表 7-7 无组织废气监测质控结果

检测项目		加标回收分析				
		分析编号	回收率 (%)	允许回收率(%)	结果评判	
	氨气	空白加标	101	97~103	符合要求	
无组织废气	321 6	空白加标	101	97~103	符合要求	
POPELIN VIOL	硫化氢	空白加标	97,9	97.7~100.3	符合要求	
	郊化图 空白加标	空白加标	97.9	97.7~100.3	符合要求	

第 43 页 共 43 页

表 7-8 环境空气监测质控结果

检测	项目	加标回收分析					
I.E.M.		分析编号	回收率 (%)	允许回收率(%)	结果评判		
	氨气	空白加标	101	97~103	符合要求		
	340 0	空白加标	101	97~103	符合要求		
	硫化氢	空白加标	97.9	97.7~100.3	符合要求		
		空白加标	97.9	97.7~100.3	符合要求		
环境空气	二氧化硫	空白加标	94.9	90~110	符合要求		
		空白加标	94.9	90~110	符合要求		
	二氧化氮	空白加标	99.0	90~110	符合要求		
	-#(rust	空白加标	99.0	90~110	符合要求		
	氯化氢	空白加标	99.4	90~110	符合要求		
	*******	空白加标	99.4	90~110	符合要求		

表 7-9 气样标准曲线验证结果统计表

样品类型	检测项目	标准曲线中间点浓度相对误差(%)	允许相对误差(%)	评价
1	铊及其化合物	4.0	10	合格
	镉及其化合物	5.0	10	合格
	铅及其化合物	3.5	10	合格
	砷及其化合物	3.0	10	合格
	铍及其化合物	2.0	10	合格
有组织废气	铬及其化合物	2.0	10	合格
	锡及其化合物	4.0	10	合格
	锑及其化合物	6.0	10	合格
	铜及其化合物	2.0	10	合格
	钴及其化合物	1.5	10	合格
	锰及其化合物	1.5	10	合格
	镍及其化合物	2.0	10	合格
	钒及其化合物	2.0	10	合格
	氟化物	1.6	10	合格
	镉	7.5	10	合格
环境空气	铅	10.0	10	合格
	砷	2,5	10	合格
	络	8.0	10	合格

第 44 页 共 43 页

表 7-10 气样有证标准样品分析检测结果统计表

样品类型	检测项目	标样编号	检测结果	标准值	评价
环境空气	氟化物 (mg/m³)	220106LH201756-2	0.758	0.768 ± 0.050	
		The second second second	0.750	0.700 ± 0.050	合格

表 7-11 气样加标回收测试结果统计表

样品类型	检测项目	加标回收率 测试结果(%)	允许加标回收率 范围(%)	评价
	镉	100	85~125	合格
环境空气	铅	95	85~125	合格
环境空气	砷	99	85~125	合格
	鉻	102	85~125	合格

7.3 噪声质量控制结果

噪声质量控制结果见表 7-12:

表7-12 噪声监测质控结果

测量日期	校准声级 (dB) A				
	测量前	测量后	差值	备 注	
2022 年 8 月 9 日昼间	93.8	93.8	0		
2022年8月9日夜间	93.8	93.8	0	测量前、后校准声级差	
2022 年 8 月 10 日昼间	93.8	93.8	0	值小于 0.5 dB (A), 测量数据有效。	
2022 年 8 月 10 日夜间	93.8	93.8	0		

第 45 页 共 43 页

7.4 土壤质量控制结果

土壤质量控制结果见表 7-13~表 7-15:

表 7-13 土壤平行样检测结果统计表

样品 类型	检测项目	实验室编号	样品结果	平行结果	样品相对偏 差(%)	允许相对偏差(%)	评价
	汞(mg/kg)	HJ22080109- 1-16-1	1.09	1,08	0.5	12	合格
	铊 (mg/kg)	HJ22080109- 1-16-1	0.8	0.7	6.7	25	合格
	镉 (mg/kg)	HJ22080109- 1-16-1	1.57	1.35	11.5	25	合格
	铅 (mg/kg)	HJ22080109- 1-16-1	700	892	12,1	20	合格
	砷 (mg/kg)	IJJ22080109- 1-16-1	56.4	54.0	2.2	15	合格
	皱(mg/kg)	HJ22080109- 1-16-1	4.19	3.78	5.1	20	合格
土壤	铬 (mg/kg)	HJ22080109- 1-16-1	54	55	0,9	20	合格
	锑(mg/kg)	HJ22080109- 1-16-1	7.78	7.66	0.8	25	合格
	铜 (mg/kg)	HJ22080109- 1-16-1	108	106	0.9	20	合格
	钴 (mg/kg)	HJ22080109- 1-15-1	20.0	19.6	1,0	30	合格
	锰 (mg/kg)	HJ22080109- 1-15-1	811	808	0.2	30'	合格
	镍 (mg/kg)	HJ22080109- 1-16-1	85	85	0.0	20	合格
	钒 (mg/kg)	HJ22080109- 1-15-1	287	282	0.9	30	合格

表 7-14 土壤有证标准样品分析检测结果统计表

样品类型	检测项目	标样编号	检测结果	标准值	评价
	汞 (mg/kg)	201216JSGSS-7	0.056~0.061	0.061 ± 0.006	合格
	铊 (mg/kg)	GSS-6a	3.3-3.5	3.6 ± 4	合格
土壤	镉(mg/kg)	201216JSGSS-31	0.32~0.35	0.34 ± 0.02	合格
铅 (mg/kg) 砷 (mg/kg)	铅 (mg/kg)	201216JSGSS-7	16~17	14 = 3	合格
	211122JSGSS-3a	6.2~6.4	6.2 ± 0.5	合格	

Tel: 027-83901064

E-mail: whhj_testing@163.com

Web2 www,whhitest.com

报告编号: HJ202208075

第 46 页 共 43 页

样品类型	检测项目	标样编号	检测结果	标准值	评价
	铍 (mg/kg)	201216JSGSS-6a	6.7~7.2	6.9 ± 0.4	合格
	铬(mg/kg)	201216JSGSS-5	113	118 ± 7	合格
	锑(mg/kg)	201216JSGSS-23	0.74~0.79	0.77 ± 0.05	合格
	铜(mg/kg)	201216JSGSS-31	37~38	37 ± 2	合格
	钴 (mg/kg)	201216JSGSS-7	94~99	97 ± 6	合格
	锰 (mg/kg)	201216JSGSS-7	1729~1805	1780 ± 113	合格
	镍(mg/kg)	201216JSGSS-6a	71~75	75 ± 6	合格
	钒 (mg/kg)	201216JSGSS-7	237~252	245 ± 21	合格

表 7-15 土壤标准曲线验证结果统计表

样品类型	检测项目	标准曲线中间点浓度相对误差(%)	允许相对误差(%)	评价
表 铊	2.3	10	合格	
	4.4	10	合格	
	镉	7.0	10	合格
	铅	7.0	10	合格
破	砷	4.6	10	合格
	铍	1.5	10	合格
土壤	铬	1.0	10	合格
	鎌	2.0	10	合格
	铜	4.6	10	合格
	钴	5.0	10	合格
	锰	3.0	10	合格
	镍	7.4	10	合格
	钒	3.0	10	合格

检测报告 报告编号: HJ202208075

第 47 页 共 43 页

声明:

1.本检测报告仅适用于华新水泥 (阳新) 有限公司 2022 年 8 月 9日~2022年8月11日污染源排放及环境质量现状监测。检测数据 仅代表检测期间相应条件下随机抽样的检测结果, 不适用于其它时 段。

2.本次监测仅根据委托单位要求,提供检测数据,不对检测结果 进行评价。

我 脱私 审核:

*****报告结束****

Tel: 027-83901064

E-mail: whhj testing/a/163.com

Web: www.whhitest.com

报告编号: HJ202208075 HUANIING

七二

检测报

附图 1: 监测点位布设图

报告编号: HJ202208075

附图 2: 现场监测照片

◎1 一号窑尾废气出口

◎2 二号窑尾废气出口

〇1 上风向厂界外 20m

〇2 下风向厂界外 5m

〇3 下风向厂界外 5m

〇4 下风向厂界外 5m

HUANJING 武汉环景

检测报告

报告编号: HJ202208075

▲1 厂界东侧

▲3 厂界西侧

●1 项目西北侧敏感点(冯坳上)

▲2 厂界南侧

▲4 厂界北侧

☆1厂区地下水监测井

报告编号: HJ202208075

☆2 厂区上游

☆3 厂区下游

口1 冯坳上

口2 厂区南侧居民点

口3 厂内窑尾

报告名称: _	华新水泥(阳新)有限公司水泥窑协同综合利用
_	替代燃料项目竣工环境保护验收监测二噁英类检测
	000000000000000000000000000000000000000
委托单位:_	武汉环景检测服务有限公司黄冈分公司
	9000000
样品类型:_	有组织废气、环境空气、土壤
报告编号: _	IHBC-03-22080502
报告日期:	2022年09月19日

中国科学院水生生物研究所水生生物数据分析管理平台检验检测专用章

声明

- 一、本平台保证检测的公正、准确、科学和规范,对检测的数据 负责,并对委托单位所提供的样品和技术资料保密;
- 二、本报告无三级审核及授权签字人签名无效,报告涂改、缺页、增删无效,未加盖 CMA 标识、本平台红色检验检测专用章及其骑缝章 无效;
- 三、本报告部分复制或完整复制后未加盖本平台红色检验检测专 用章无效;

四、由委托方自行采集送检的样品,本报告仅对送检样品的检测 数据负责,不对样品来源负责;

五、未经同意本报告不得用于广告宣传;

六、委托方若对本报告有异议,请于收到报告之日起十个工作日 内以书面形式向我平台提出,逾期不予受理,无法保存、复现的样品 不受理申诉。

HEIDAC

名称: 中国科学院水生生物研究所水生生物数据分析管理平台

地址: 湖北省武汉市武昌区东湖南路7号

邮编: 430072

电话: 027-68780975

电子邮箱: mronli@ihb.ac.cn

一、项目由来

受武汉环景检测服务有限公司黄冈分公司的委托,中国科学院水生生物研究 所水生生物数据分析管理平台于 2022 年 08 月 09 日~08 月 11 日对华新水泥(阳 新)有限公司水泥窑协同综合利用替代燃料项目的废气、环境空气、土壤进行现 场采样,并依据国家检测标准的相关要求,对采集样品进行分析检测,根据检测 结果编制完成本项目废气、环境空气、土壤检测报告。

二、项目概况及检测方案

1、项目概况

污染类别 有组织废气	污染源 水泥窑协同处置固	治理措施 复合脱硫+布袋除尘	排放规律	排放去向 通过 80m 高排气筒排放			
生产负荷	. 11144	检测时段生产负荷	苛达到 75% 均	LL:			
经营范围		水泥制造					
项目地址	黄石市阳新县韦源	黄石市阳新县韦源口镇华新路 1 号新港工业园区华新水泥(阳新)有限公司内					
项目名称	华新水泥(阳新)有限公司水泥窑协同综合利用替代燃料项目						

2、检测方案

2.1 有组织废气检测方案

采样日期	检测类别	监测点位	检测项目	检测频次	
2022.08.09	-E-Viri Jer Ma	二号窑尾废气排气筒◎1	1070 - 14+ ALC	4.44.295.4.95	
2022.08,10	有组织废气 08,10	一号窑尾废气排气筒◎2	二噁英类	3 次/天×2 天	

2.2 环境空气检测方案

采样日期	检测类别	检测点位	经纬度	检测项目	检测频次
2022.08.09	环境空气	冯坳上 2#●1	E 115°16'5.57" N 30°6'34.67"	二噁英类	1次/天×2天

2.3 土壤检测方案

采样日期	检测类别	检测点位	采样深度	经纬度	检测项目	检测频次
2022.08.09	土壤	厂区南侧居民 点 3#口1	表层样 0~0.2m	E 115°16'29.69" N 30°6'37.45"	二噁英类	1次/天×1天

采样日期	检测类别	检测点位	采样深度	经纬度	检测项目	检测频次
	1.14	冯坳上 2#口2	表层样 0~0.2m	E 115°16'3.45" N 30°6'31.16"	many state State	. W. T. V. T
2022.08.09	土壌	厂内窑尾附近 1#□3	表层样 0~0.2m	E 115°16'22.76" N 30°6'59.22"	一懸央尖	1 次/天×1 天

三、样品检测

3.1 有组织废气、环境空气样品检测

检测类别	检测项目	样品性状	样品保存	分析日期
有组织废气	二噁英类	玻璃纤维滤筒+XAD-2 树脂+冷凝水	who is to first their black with 1977 when	2022.08.18
环境空气		石英纤维滤膜+PUF	密封低温避光保存	2022.08,16

3.2 土壤样品检测

检测类别	检测点位	样品性状	样品保存	分析日期
土壤	厂区南侧居民点 3#口1	灰、砂壤土、干		2022.08.19
	冯坳上 2#□2	黄、砂壤土、干	密封阴凉 干燥保存	~
	厂内窑尾附近 1#口3	红、粘土、潮	1 0830313	2022.09.17

四、检测分析方法及主要仪器

检测类别	检测项目	分析方法	检测依据	仪器名称、型号及编号
有组织废气	二噁英类	同位本移取	HJ 77.2-2008	赛默飞 DFS 高分辨双聚焦磁质谱 IHBC-SY-036 MH3300 环境空气有机物采样器
环境空气		同位素稀释 高分辨气相 色谱-高分辨	HJ 77.2-2008	IHBC-CY-002 崂应 3030B 智能废气二噁英采样器
土壌		质谱法	НЈ 77.4-2008	IHBC-CY-031 ZR-3950 环境空气有机物采样器 IHBC-CY-004

五、质量控制和质量保证

- 1、严格按照国家有关环境监测技术规范执行全程序的质量控制,本次检测按照《HJ 916-2017 环境二噁英类监测技术规范》执行。
- 2、所有监测及分析仪器均经检定并在有效期内,且参照有关计量检定规程 定期进行校验和维护。

- 3、严格按照国家规定的监测分析方法标准和相应的技术规范进行采样及检测。
- 4、为确保检测数据的准确、可靠,在样品的采样、运输、保存、实验室分析和数据计算的全过程均按照相关技术规范的要求进行。
- 5、样品采用全程序空白测定、加标回收率测定和曲线中间浓度校核点复测 等方式进行质量控制。
 - 6、监测人员经考核合格,持证上岗。
 - 7、检测数据和报告均实行三级审核。

六、检测结果

6.1 有组织废气检测结果

22 77 E. He	监测点位	4A MM 48 EI		检测	训结果	
采样日期 监测点位		检测项目	1	2	3	均值
		烟气温度 (℃)	114.3	108.8	108.6	110.6
		流速(m/s)	9.8	10,0	10.2	10.0
	75	氧含量(%)	11.6	11.7	11.5	11.6
		标于流量(m³/h)	605531	623047	637544	622041
	二号窑尾	二噁英类换算质量浓度(ngTEQ/m³)	0.044	0.14	0.076	0.087
10000	废气排气 筒◎I	烟气温度 (℃)	108,1	163.0	176.7	149.3
		流速 (m/s)	9,5	10,8	11.5	10.6
2022.08.10		氣含量 (%)	11.7	11.3	11.0	11.3
		标干流量(m³/h)	594403	572748	615311	594154
		二噁英类换算质量浓度(ngTEQ/m³)	0.0094	0.021	0.25	0.093
		烟气温度 (℃)	107.6	107.3	134.1	116.3
	一号窑尾	流速(m/s)	8.5	8.5	6.9	8.0
2022.08.09	废气排气	氧含量 (%)	11.9	11.1	11.3	11.4
	筒◎2	标干流量 (m³/h)	551209	548253	416527	505330
		二噁英类换算质量浓度(ngTEQ/m³)	0.038	0.015	0.024	0.026

采样日期 监测	theamil . H. A.	LA Statutor Int	检测结果			
	监测点位	检测项目	1	2	3	均值
Дауг		烟气温度 (℃)	108.4	108.9	109.1	108.8
	一号窑尾	流速 (m/s)	10,2	11.0	10.2	10.5
2022.08.10	废气排气	氣含量 (%)	11.6	12.8	12,5	12,3
筒◎2	标干流量(m³/h)	657410	704792	650522	670908	
		二噁英类换算质量浓度(ngTEQ/m³)	0.020	0.016	0.015	0.017

注;该二噁英类检测结果为换算成基准含氧量为10%的大气污染物基准排放浓度。

6.2 环境空气检测结果

采样日期	监测点位	检测项目	检测结果
2022.08.09	See IN L. Allera	二噁英类	0.020
2022.08.10	冯坳上 2#●1	(pgTEQ/m³)	0.063

6.3 气象参数

采样日期	天气	温度 (℃)	湿度 (%)	风速 (m/s)	气压(kPa)	风向
2022.08.09	晴	29.4~38.0	48.1~79.3	1.8~2.6	100.1~100.4	东南
2022.08.10	晴	28.5~38.2	44.9~82.7	2.1~3.1	100.3~100.5	东南

6.4 土壤检测结果

采样日期	监测点位	检测项目	检测结果
	厂区南侧居民点 3#口1 (表层样 0~0.2m) 二噁英	50.25.00	1.6
2022.08.09	冯坳上 2#□2(表层样 0~0.2m)	二噁英类 (ngTEQ/kg)	0.46
	厂内窑尾附近 1#口3 (表层样 0~0.2m)	(IIg1LQ/Kg)	0.72

编制:黄小子

日期: 2023.9.19

复核: 护政

日期: 2027, 9,19

附表 1: 有组织废气二噁英类单项检测结果

	样品编号		IHB22080	502YQT1D1-1		
	检测点位		二号窑尾	废气排气筒 🛛 1		
	采样时间	2022年(8月09日	采样频次		1
	二噁英类	样品检出限ρDL	实测质量浓度p:	s 换算质量浓度p		当量(TEQ) 量浓度
			ng/m³		1-TEF	ng TEQ/m
名	2,3,7,8-T ₄ CDD	0.0002	N.D.	N,D.	1	1000.0
多氯代	1,2,3,7,8-P ₅ CDD	0.0009	N.D.	N.D.	0.5	0.0002
二苯并	1,2,3,4,7,8-H ₆ CDD	0.001	N.D.	N.D.	0.1	0.0001
并	1,2,3,6,7,8-H ₆ CDD	0.0003	N.D.	N.D.	0.1	0.00002
对	1,2,3,7,8,9-H ₆ CDD	0.001	N.D.	N.D.	0,1	0.00007
二噁英	1,2,3,4,6,7,8-H ₂ CDD	0.0009	N.D.	N.D.	0.01	0.000005
英	O ₈ CDD	0.001	N,D,	N.D.	0.001	0.0000007
	2,3,7,8-T ₄ CDF	0.0001	0.151	0,177	0.1	0.018
	1,2,3,7,8-P ₅ CDF	0.001	0.065	0.076	0.05	0.004
	2,3,4,7,8-P ₅ CDF	0.0009	0.033	0,039	0.5	0.020
多無	1,2,3,4,7,8-H ₆ CDF	0.0009	0.007	0.008	0.1	0.0008
代	1,2,3,6,7,8-H ₆ CDF	0.001	0.007	0.009	0.1	0.0009
多氯代二苯并呋喃	1,2,3,7,8,9-H ₆ CDF	0.0009	N.D.	N.D.	0.1	0.00005
呋喃	2,3,4,6,7,8-H ₆ CDF	0.0009	0.004	0,005	0.1	0.0005
	1,2,3,4,6,7,8-H ₇ CDF	0.002	0.005	0.006	10.0	0.00006
	1,2,3,4,7,8,9-H ₇ CDF	100.0	N.D.	N.D.	0.01	0.000007
	O ₈ CDF	0.001	N.D.	N.D.	0,001	0.0000007
(二噁英类总量 PCDDs+PCDFs)	was a second		наман		0.044

注: 1.换算质量浓度 (ρ): 二噁英类质量浓度的 10%含氧量换算值, ng/m^3 。 $p=(21-φ_n(O_2))$ /[21- $φ_s(O_2)$]* $ρ_s$,式中 $φ_u(O_2)$ =10, $φ_s(O_2)$: 废气中含氧量= 11.6%。(若废气中氧气体积分数超过 20%,则取 $φ_s(O_2)$ =20)。

^{2.}毒性当量因子 (TEF): 采用国际毒性当量因子 1-TEF 定义。

^{3.}毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8,-T₄CDD 质量浓度, ng/m³。

^{4.}样品量: 2.1200 m3(标准状态); 分样比例 f: 50%。

^{5.}当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

	样品编号		IHB22080502YQT1D1-2				
	检测点位		二号窑尾	废气排气筒◎1			
	采样时间	2022年(8月09日	采样频次		2	
	二噁英类	样品检出限ρDL	实测质量浓度ps	換算质量浓度ρ		当量(TEQ) 量浓度	
			ng/m³		I-TEF	ng TEQ/m	
老	2,3,7,8-T ₄ CDD	0.0002	N,D.	N.D.	1-	0.0001	
多無代	1,2,3,7,8-P ₅ CDD	0.0009	N,D,	N.D.	0.5	0.0002	
	1,2,3,4,7,8-H ₆ CDD	0.001	0.006	0.007	0.1	0.0007	
一苯并一	1,2,3,6,7,8-H ₆ CDD	0.0003	0.006	0.007	0,1	0,0007	
对	1,2,3,7,8,9-H ₆ CDD	0.001	N.D.	N.D.	0.1	0.00007	
二噁英	1,2,3,4,6,7,8-H ₇ CDD	0.0009	N.D.	N.D.	0.01	0.000005	
英	O ₈ CDD	0.001	N.D.	N.D.	0.001	0.0000007	
П	2,3,7,8-T ₄ CDF	0.0001	0.307	0.364	0.1	0.036	
	1,2,3,7,8-P ₅ CDF	0.001	0.134	0,159	0.05	0.008	
	2,3,4,7,8-P ₅ CDF	0.0009	0.147	0.174	0.5	0.087	
多知	1,2,3,4,7,8-H ₆ CDF	0.0009	0.031	0.036	0,1	0.004	
多氯代二苯并呋喃	1,2,3,6,7,8-H ₆ CDF	0.001	0.029	0.034	0.1	0.003	
苯并	1,2,3,7,8,9-H ₆ CDF	0.0009	N.D.	N.D.	0,1	0.00005	
呋喃	2,3,4,6,7,8-H ₆ CDF	0.0009	0.019	0.022	0.1	0.0022	
	1,2,3,4,6,7,8-H ₂ CDF	0.002	0.012	0.015	0.01	0.0001	
	1,2,3,4,7,8,9-H ₇ CDF	0.001	N.D.	N.D.	0.01	0.000007	
	O ₈ CDF	100.0	N.D.	N.D.	0.001	0.0000007	
(二噁英类总量 PCDDs+PCDFs)	ates			*****	0.14	

注;1.换算质量浓度(p);二噁英类质量浓度的 10%含氧量换算值, ng/m^3 。 $p=(21-φ_n(O_2))$ /[21- $φ_n(O_2)$]*ps,式中 $φ_n(O_2)=10$, $φ_s(O_2)$:废气中含氧量= $_{11.7}$ %。(若废气中氧气体积分数超过 20%,则取 $φ_s(O_2)=20$)。

^{2.}毒性当量因子(TEF): 采用国际毒性当量因子 I-TEF 定义。

^{3.}毒性当量 (TEQ) 质量浓度: 折算为相当于 2,3,7,8,-T₄CDD 质量浓度, ng/m³。

^{4.}样品量: 2.2010 m3(标准状态); 分样比例 I: 50%。

^{5.}当实测质量浓度低于检出限时用"N.D."表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

	样品编号	IHB22080502YQT1D1-3						
	检测点位		二号窑尾版	近气排气筒◎1				
	采样时间	2022年0	8月09日	采样频次		3		
	二噁英类	样品检出限ρDL	实测质量浓度ps	换算质量浓度ρ		当量(TEQ) 量浓度		
			ng/m³		1-TEF	ng TEQ/m		
彩	2,3,7,8-T ₄ CDD	0.0002	N.D.	N.D.	1	0,0001		
多氟代	1,2,3,7,8-P ₅ CDD	0.0009	0,013	0.015	0.5	0.008		
_	1,2,3,4,7,8-H ₆ CDD	100,0	0,011	0.012	0.1	0.001		
一苯并一	1,2,3,6,7,8-H ₆ CDD	0.0003	0.015	0.018	0,1	0.002		
对	1,2,3,7,8,9-H ₆ CDD	0.001	0.010	0.011	0.1	0.001		
二噁英	1,2,3,4,6,7,8-H ₇ CDD	0.0009	0.063	0.073	0.01	0.0007		
英	O ₈ CDD	0.001	0.109	0.126	0.001	0.0001		
	2,3,7,8-T ₄ CDF	0.0001	0.036	0.042	0.1	0.004		
	1,2,3,7,8-P5CDF	0,001	0,043	0,050	0.05	0.002		
	2,3,4,7,8-P ₅ CDF	0,0009	0,069	0.080	0,5	0.040		
多氯代一	1,2,3,4,7,8-H ₆ CDF	0,0009	0.038	0.044	0.1	0.004		
代二	1,2,3,6,7,8-H ₆ CDF	0.001	0.038	0.044	0.1	0.004		
一苯并呋喃	1,2,3,7,8,9-H ₆ CDF	0.0009	0.006	0.006	0.1	0.0006		
呋喃	2,3,4,6,7,8-H ₆ CDF	0.0009	0.048	0.055	0.1	0.006		
	1,2,3,4,6,7,8-H ₇ CDF	0.002	0.115	0.133	0.01	0.001		
	1,2,3,4,7,8,9-H ₇ CDF	0,001	0,010	0.011	0.01	0.0001		
	O ₈ CDF	0.001	0.047	0.054	100.0	0.00005		
(二噁英类总量 PCDDs+PCDFs)			*****	*****	0.076		

注: 1.换算质量浓度(ρ): 二噁英类质量浓度的 10%含氧量换算值, ng/m^3 。 ρ =(21- $\phi_0(O_2)$)/[21- $\phi_s(O_2)$]* ρ_s ,式中 $\phi_n(O_2)$ =10, $\phi_s(O_2)$: 废气中含氧量=11.5%。(若废气中氧气体积分数超过 20%,则取 $\phi_s(O_2)$ =20)。

- 2.毒性当量因子(TEF);采用国际毒性当量因子 I-TEF 定义。
- 3.毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8,-T₄CDD 质量浓度, ng/m³。
- 4.样品量: 2.2643 m'(标准状态); 分样比例 f: 50%。
- 5.当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

	样品编号		IHB22080	502YQT2D1-1				
	检测点位		二号窑尾	废气排气筒◎1				
	采样时间	2022年0	8月10日	采样頻次		1		
	二噁英类	样品检出限ρDL	实测质量浓度ps	換算质量浓度ρ		当量(TEQ) 量浓度		
			ng/m³		1-TEF	ng TEQ/m		
老	2,3,7,8-T ₄ CDD	0.0002	N.D.	N.D.	1	0.0001		
多氯代	1,2,3,7,8-P ₅ CDD	0.001	N.D.	N.D.	0.5	0.0002		
二苯并	1,2,3,4,7,8-H ₆ CDD	0.001	N.D.	N.D.	0.1	0.00007		
17	1,2,3,6,7,8-H ₆ CDD	0.0003	N.D.	N.D.	0.1	0.00002		
对	1,2,3,7,8,9-H ₆ CDD	0,001	N.D.	N.D.	0.1	0.00007		
二噁英	1,2,3,4,6,7,8-H ₇ CDD	0.001	N.D.	N.D.	0.01	0.000005		
英	O ₈ CDD	0.001	N.D.	N,D,	0,001	0,0000007		
	2,3,7,8-T ₄ CDF	0.0001	0.017	0,020	0.1	0.0020		
	1,2,3,7,8-P ₅ CDF	0.001	0.012	0.014	0.05	0.0007		
	2,3,4,7,8-P ₅ CDF	0.001	0.009	0.011	0.5	0.0053		
多無代	1,2,3,4,7,8-H ₆ CDF	0.001	0.003	0.004	0.1	0.0004		
	1,2,3,6,7,8-H ₆ CDF	0.001	0,003	0.004	0.1	0.0004		
举并呋喃	1,2,3,7,8,9-HaCDF	0.001	N.D.	N,D,	0.1	0.00005		
呋喃	2,3,4,6,7,8-H ₆ CDF	0.001	N.D.	N,D,	0.1	0.00005		
	1,2,3,4,6,7,8-H ₇ CDF	0.002	0.006	0.007	0.01	0,00007		
	1,2,3,4,7,8,9-H ₇ CDF	0.001	N.D.	N.D.	0,01	0.000007		
	O ₈ CDF	0.001	N.D.	N.D.	0.001	0.0000007		
(二噁英类总量 PCDDs+PCDFs)	****	****			0.0094		

注: 1.换算质量浓度(ρ): 二噁英类质量浓度的 10%含氧量换算值, ng/m^3 。 ρ =(21- $\phi_n(O_2)$)/[21- $\phi_s(O_2)$]* ρ s,式中 $\phi_n(O_2)$ =10, $\phi_s(O_2)$: 废气中含氧量=_11.7%。(若废气中氧气体积分数超过 20%,则取 $\phi_s(O_2)$ =20)。

- 2.毒性当量因子 (TEF): 采用国际毒性当量因子 J-TEF 定义。
- 3.毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8,-T4CDD 质量浓度, ng/m3。
- 4.样品量: 2.1051 m3(标准状态); 分样比例 f: 50%。
- 5.当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

	样品编号		JHB2208	0502YQT2D1-2		
检测点位 二号窑尾废作				废气排气筒◎1		
	采样时间	2022年08月10日 采样频次		7.0	2	
	二噁英类	样品检出限ρDL	实测质量浓度ρ	s 換算质量浓度p		当量(TEQ) 量浓度
			ng/m³		1-TEF	ng TEQ/m
岩	2,3,7,8-T ₄ CDD	0.0002	N.D.	N.D.	1	0.0001
多無代	1,2,3,7,8-P ₅ CDD	0.001	N.D.	N.D.	0.5	0.0002
二米	1,2,3,4,7,8-H ₆ CDD	0.001	N.D.	N.D.	0.1	0.00007
二苯并—	1,2,3,6,7,8-H ₆ CDD	0.0003	N.D.	N.D.	0.1	0.00002
对	1,2,3,7,8,9-H ₆ CDD	0.001	N.D.	N.D.	0,1	0.00007
二噁英	1,2,3,4,6,7,8-H ₇ CDD	0.001	N.D.	N.D.	0,01	0.000005
英	O ₈ CDD	0,001	N.D.	N.D.	0.001	0.0000007
	2,3,7,8-T ₄ CDF	0.0001	0.051	0.057	0.1	0.006
	1,2,3,7,8-P₅CDF	0.001	0.022	0.025	0.05	0.001
	2,3,4,7,8-P ₅ CDF	0.001	0,018	0,021	0.5	0.010
多氯代	1,2,3,4,7,8-H ₆ CDF	0,001	0,010	0.011	0.1	0.001
	1,2,3,6,7,8-H ₆ CDF	0.001	0.010	0.012	0.1	0.001
一苯并呋喃	1,2,3,7,8,9-H ₆ CDF	0.001	N.D.	N.D.	0.1	0.00005
呋喃	2,3,4,6,7,8-H ₆ CDF	0.001	0.006	0.007	0.1	0.0007
.,	1,2,3,4,6,7,8-H ₇ CDF	0.002	0.012	0.013	0.01	0.0001
	1,2,3,4,7,8,9-H ₇ CDF	0.001	N.D.	N.D.	0.01	0.000007
	O ₈ CDF	0.001	N.D.	N.D.	0.001	0.0000007
Ĭ,	二噁英类总量 PCDDs+PCDFs)		- Marie	*****	2444	0,021

注: 1.换算质量浓度(p): 二噁英类质量浓度的 10%含氧量换算值, ng/m^3 。 $p=(21-\phi_0(O_2))$ /[21- $\phi_s(O_2)$]*ps,式中 $\phi_0(O_2)$ =10, $\phi_s(O_2)$: 废气中含氧量=_11.3%。(若废气中氧气体积分数超过20%,则取 $\phi_s(O_2)$ =20)。

- 2.毒性当量因子(TEF):采用国际毒性当量因子I-TEF定义。
- 3.毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8,-T₄CDD 质量浓度, ng/m³。
- 4.样品量: 2.0857 m3(标准状态); 分样比例 f; 50%。
- 5.当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

	样品编号		1HB22080	502YQT2D1-3		
	检测点位		二号窑尾	変气排气筒◎1		
	采样时间	2022年0	8月10日	采样频次		3
	二噁英类	样品检出限ρDL	实测质量浓度ps	换算质量浓度p		当量(TEQ) 量浓度
			ng/m³		I-TEF	ng TEQ/m
老	2,3,7,8-T ₄ CDD	0.0002	N.D.	N.D.	1	1000.0
多氯代	1,2,3,7,8-P ₅ CDD	0.0009	N.D.	N.D.	0.5	0.0002
-	1,2,3,4,7,8-H ₆ CDD	0.001	N.D.	N.D.	0.1	0.00007
一苯并一	1,2,3,6,7,8-H ₆ CDD	0.0003	N.D.	N.D.	0.1	0.00002
对	1,2,3,7,8,9-H ₆ CDD	0.001	N,D,	N.D.	0.1	0.00007
二噁英	1,2,3,4,6,7,8-H ₇ CDD	0.0009	N.D.	N.D.	0.01	0.000005
英	O ₈ CDD	0.001	N.D.	N.D.	0.001	0.0000007
	2,3,7,8-T ₄ CDF	0.0001	0.527	0.580	0,1	0.058
	1,2,3,7,8-P ₅ CDF	0.001	0.225	0.248	0.05	0.012
	2,3,4,7,8-P ₅ CDF	0.0009	0.271	0.298	0.5	0.149
多如	1,2,3,4,7,8-H ₆ CDF	0.0009	0.097	0.107	1.0	0.011
多氯代二苯并呋喃	1,2,3,6,7,8-H ₆ CDF	0.001	0.084	0.092	0.1	0.009
苯并	1,2,3,7,8,9-H ₆ CDF	0,0009	0,041	0.045	0.1	0.005
呋喃	2,3,4,6,7,8-H ₆ CDF	0,0009	0,069	0.076	1.0	0,008
	1,2,3,4,6,7,8-H ₇ CDF	0.002	0.035	0.039	0,01	0,0004
	1,2,3,4,7,8,9-H ₇ CDF	0.001	N.D.	N.D.	0.01	0.000007
	O ₈ CDF	0.001	0.007	0.008	100.0	0.000008
. (二噁英类总量 PCDDs+PCDFs)		years.	- Market	-	0,25

注: 1.换算质量浓度(ρ): 二噁英类质量浓度的 10%含氧量换算值, ng/m^3 。 $p=(21-φ_n(O_2))/[21-φ_s(O_2)]*ps$,式中 $φ_n(O_2)=10$, $φ_s(O_2)$: 废气中含氧量= 11.0%。(若废气中氧气体积分数超过 20%,则取 $φ_s(O_2)=20$)。

^{2.}毒性当量因子(TEF):采用国际毒性当量因子1-TEF定义。

^{3.}毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8,-T₄CDD 质量浓度, ng/m³。

^{4.}样品量: 2.1705 m3(标准状态); 分样比例 f: 50%。

^{5.}当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

	样品编号	IHB22080502YQT1D2-1						
	检测点位		一号窑尾)	废气排气筒◎2	2			
	采样时间	2022年(8月09日	采样频次		1		
	二噁英类	样品检出限ρDL	实测质量浓度ps	换算质量浓度ρ		当量(TEQ) 量浓度		
			ng/m³ I-TEF ng TI					
名	2,3,7,8-T ₄ CDD	0.00009	N.D.	N.D.	1	0,00005		
多氯代	1,2,3,7,8-P ₅ CDD	0.0005	0.006	0.007	0.5	0.003		
二米并	1,2,3,4,7,8-H ₆ CDD	0.0007	0.002	0.002	0.1	0.0002		
	1,2,3,6,7,8-H ₆ CDD	0.0002	0,004	0.005	0.1	0.0005		
对	1,2,3,7,8,9-H ₆ CDD	0.0007	0,003	0.004	0.1	0.0004		
二噁英	1,2,3,4,6,7,8-H ₇ CDD	0,0005	0.014	0.017	0.01	0.0002		
英	O ₈ CDD	0.0007	0.018	0.021	0.001	0.00002		
	2,3,7,8-T ₄ CDF	0.00007	0.040	0.048	0,1	0,005		
	1,2,3,7,8-P ₅ CDF	0.0007	0.023	0.028	0.05	0.001		
	2,3,4,7,8-PsCDF	0.0005	0.034	0.042	0.5	0.021		
多氮	1,2,3,4,7,8-H ₆ CDF	0.0005	0.017	0.020	0.1	0.002		
多氯代二苯并呋喃	1,2,3,6,7,8-H ₆ CDF	0,0007	0.015	0.018	0.1	0.002		
苯并	1,2,3,7,8,9-H ₆ CDF	0.0005	0,004	0,005	0.1	0.0005		
呋喃	2,3,4,6,7,8-H ₆ CDF	0.0005	0.015	0.018	0.1	0.002		
	1,2,3,4,6,7,8-H ₇ CDF	0.0009	0.038	0.046	0.01	0,0005		
	1,2,3,4,7,8,9-H ₇ CDF	0.0007	0.006	0.008	0.01	80000.0		
	O ₈ CDF	0.0007	0.025	0,030	100.0	0.00003		
(二噁英类总量 PCDDs+PCDFs)	*****				0.038		

注: 1.换算质量浓度 (ρ): 二噁英类质量浓度的 10%含氧量换算值, ng/m³。 ρ= (21-φ_n(O₂)) /[21- $\phi_s(O_2)$]* ρ_s ,式中 $\phi_n(O_2)$ =10, $\phi_s(O_2)$: 废气中含氧量=11.9%。(若废气中氧气体积分数超过 20%,则取φ_s(O₂)=20)。

^{2.}毒性当量因子(TEF): 采用国际毒性当量因子1-TEF 定义。

^{3.}毒性当量 (TEQ) 质量浓度: 折算为相当于 2,3,7,8,-T₄CDD 质量浓度, ng/m3.

^{4.}样品量: 4.2684 m3(标准状态); 分样比例 f: 50 %。

^{5.}当实测质量浓度低于检出限时用"N.D."表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检 出限计算。

	样品编号		IHB22080502YQT1D2-2					
	检测点位		一号窑	尾废气排气筒◎2	2			
	采样时间	2022年(8月09日	采样频次		2		
	二噁英类	样品检出限ρDL	实测质量浓度	ps换算质量浓度ρ		当量(TEQ) 量浓度		
	-02000		ng/m³		I-TEF	ng TEQ/m		
老	2,3,7,8-T ₄ CDD	0.0001	N.D.	N.D.	1	0.00007		
多氯代一	1,2,3,7,8-P₅CDD	0.0007	N.D,	N.D.	0.5	0.0002		
二苯并	1,2,3,4,7,8-H ₆ CDD	0.001	N.D.	N.D.	0.1	0.00005		
并	1,2,3,6,7,8-H ₆ CDD	0.0002	N.D.	N.D.	0.1	0.00001		
对	1,2,3,7,8,9-H ₆ CDD	0.001	N.D.	N.D.	0.1	0.00005		
一噁英	1,2,3,4,6,7,8-H ₇ CDD	0.0007	N.D.	N.D.	0.01	0.000003		
英	O ₈ CDD	0,001	N.D.	N.D.	0.001	0.0000005		
	2,3,7,8-T ₄ CDF	0.0001	0.016	0.018	0.1	0.002		
	1,2,3,7,8-P ₅ CDF	0.001	0.011	0.012	0.05	0.0006		
	2,3,4,7,8-P ₅ CDF	0.0007	0.018	0.020	0.5	0.010		
多氣	1,2,3,4,7,8-H ₆ CDF	0.0007	0.006	0.007	0.1	0.0007		
代	1,2,3,6,7,8-H ₆ CDF	0.001	0.006	0.006	0.1	0.0006		
苯并	1,2,3,7,8,9-H ₆ CDF	0.0007	N.D.	N.D.	0.1	0.00003		
苯并呋喃	2,3,4,6,7,8-H ₆ CDF	0.0007	0.005	0.006	0.1	0.0006		
	1,2,3,4,6,7,8-H ₂ CDF	0.001	0.015	0.017	0.01	0.0002		
	1,2,3,4,7,8,9-H ₇ CDF	0,001	N.D.	N.D.	10.0	0.000005		
	O ₈ CDF	0.001	0.014	0.015	0.001	0.00002		
.(二噁英类总量 PCDDs+PCDFs)		24422			0.015		

注: 1.换算质量浓度(p): 二噁英类质量浓度的 10%含氧量换算值, ng/m^3 。 $p=(21-φ_n(O_2))$ /[21- $φ_s(O_2)$]* $ρ_s$,式中 $φ_0(O_2)$ =10, $φ_s(O_2)$: 废气中含氧量=_11.1%。(若废气中氧气体积分数超过 20%,则取 $φ_s(O_2)$ =20)。

^{2.}毒性当量因子(TEF): 采用国际毒性当量因子 I-TEF 定义。

^{3.}毒性当量 (TEQ) 质量浓度: 折算为相当于 2,3,7,8,-T₄CDD 质量浓度, ng/m3。

^{4.}样品量: 3.0144 m3(标准状态); 分样比例 f: 50%。

^{5.}当实测质量浓度低于检出限时用"N.D."表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

	样品编号		1HB22080	502YQT1D2-3				
	检测点位		一号窑尾	废气排气筒◎2	©2			
	采样时间	2022年(8月09日	采样频次		3		
	二噁英类	样品检出限ρDL	实测质量浓度ps	换算质量浓度p		当量(TEQ) 量浓度		
			ng/m³		I-TEF	ng TEQ/m		
名	2,3,7,8-T ₄ CDD	0.0002	N.D.	N.D.	I	0.0001		
多氮代	1,2,3,7,8-P ₅ CDD	0.0009	N,D,	N.D.	0.5	0.0002		
二苯并	1,2,3,4,7,8-H ₆ CDD	100,0	N,D,	N.D.	0.1	0.00007		
并	1,2,3,6,7,8-H ₆ CDD	0.0003	N.D.	N.D.	0,1	0.00002		
对	1,2,3,7,8,9-H ₆ CDD	0.001	N.D.	N.D.	0.1	0.00007		
二噁英	1,2,3,4,6,7,8-H ₇ CDD	0.0009	0.012	0.014	0.01	0.0001		
英	O ₈ CDD	0,001	0.016	0.018	0.001	0.00002		
	2,3,7,8-T ₄ CDF	1000.0	0.017	0.020	0.1	0.002		
	1,2,3,7,8-P ₅ CDF	0.001	0.011	0.012	0.05	0.0006		
	2,3,4,7,8-P ₅ CDF	0.0009	0.030	0.034	0.5	0.017		
多氮	1,2,3,4,7,8-H ₆ CDF	0.0009	0,008	0,010	0.1	0.001		
多氯代二苯并呋喃	1,2,3,6,7,8-H ₆ CDF	0.001	0.009	0.010	0.1	0.001		
苯并	1,2,3,7,8,9-H ₆ CDF	0.0009	0.002	0.003	0.1	0.0003		
呋喃	2,3,4,6,7,8-H ₆ CDF	0.0009	0.009	0.010	0.1	0.001		
	1,2,3,4,6,7,8-H ₂ CDF	0.002	0.030	0.034	0.01	0,0003		
	1,2,3,4,7,8,9-H ₂ CDF	0,001	0.007	0.007	0.01	0.00007		
	O ₈ CDF	100.0	0.047	0.053	0.001	0.00005		
.(二噁英类总量 PCDDs+PCDFs)			prosect.		0.024		

注: 1.换算质量浓度(p): 二噁英类质量浓度的 $10\%含氧量换算值,<math>ng/m^3$ 。 $p=(21-\phi_n(O_2))/[21-\phi_n(O_2)]*ps$,式中 $\phi_n(O_2)=10$, $\phi_n(O_2)$: 废气中含氧量= $_11,3$ %。(若废气中氧气体积分数超过 20%,则取 $\phi_n(O_2)=20$)。

- 2.毒性当量因子(TEF);采用国际毒性当量因子1-TEF定义。
- 3.毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8,-T₄CDD 质量浓度, ng/m³。
- 4.样品量: 2.2143 m3(标准状态); 分样比例 f: 50%。
- 5.当实测质量浓度低于检出限时用"N.D."表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

	样品编号		1HB22080	502YQT2D2-1				
	检测点位		一号窑尾	废气排气筒◎2				
Т	采样时间	2022年(8月10日	采样频次		1:		
Ī	二噁英类	样品检出限ρDL	实测质量浓度ps	;換算质量浓度p		当量(TEQ) 量浓度		
			ng/m³		I-TEF	ng TEQ/m		
名	2,3,7,8-T ₄ CDD	0.0001	N.D.	N.D.	1	0.00005		
多氯代二	1,2,3,7,8-P ₅ CDD	0.0005	N.D.	N.D.	0.5	0,0001		
	1,2,3,4,7,8-H ₆ CDD	0.0008	N.D.	N.D.	0.1	0.00004		
一苯并一	1,2,3,6,7,8-H ₆ CDD	0.0002	N.D.	N.D.	0.1	10000.0		
对	1,2,3,7,8,9-H ₆ CDD	0.0008	N.D.	N.D.	0.1	0.00004		
二噁英	1,2,3,4,6,7,8-H ₇ CDD	0,0005	0.009	0.010	0.01	0.0001		
英	OsCDD	0,0008	0,007	0.008	100.0	0.000008		
	2,3,7,8-T ₄ CDF	0.0001	0.014	0.017	0.1	0.002		
	1,2,3,7,8-P ₅ CDF	0.0008	0.010	0.011	0.05	0.0006		
	2,3,4,7,8-P ₅ CDF	0.0005	0.025	0.029	0,5	0,015		
多氮	1,2,3,4,7,8-H ₆ CDF	0.0005	0.007	0.008	1.0	0.0008		
多氮代二苯并呋喃	1,2,3,6,7,8-H ₆ CDF	0.0008	0.006	0.008	0.1	0.0008		
苯并	1,2,3,7,8,9-H ₆ CDF	0.0005	0.001	0.001	0.1	0.0001		
呋喃	2,3,4,6,7,8-H ₆ CDF	0,0005	0,006	0,007	0.1	0.0007		
	1,2,3,4,6,7,8-H ₇ CDF	0.001	0.017	0.020	0.01	0.0002		
	1,2,3,4,7,8,9-H ₇ CDF	0.0008	N.D.	N.D.	0.01	0.000004		
	O ₈ CDF	0.0008	0.015	0.017	0.001	0.00002		
.(二噁英类总量 PCDDs+PCDFs)	41404	44114	43934	++++	0.020		

注: 1.换算质量浓度 (ρ) : 二噁英类质量浓度的 10%含氧量换算值, ng/m^3 。 $\rho=(21-\phi_0(O_2))$ /[$21-\phi_s(O_2)$]* ρ_s ,式中 $\phi_0(O_2)$ =10, $\phi_s(O_2)$: 废气中含氧量=11.6%。(若废气中氧气体积分数超过 20%,则取 $\phi_s(O_2)$ =20)。

^{2.}毒性当量因子 (TEF): 采用国际毒性当量因子 1-TEF 定义。

^{3.}毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8,-T₄CDD 质量浓度, ng/m3。

^{4.}样品量: _3.6394_ m3(标准状态); 分样比例 f: 50%。

^{5.}当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

	样品编号		THB2200	80502YQT2D2-2		
	检测点位	#品检出限pDL 实測质量浓度ps 換算质量浓度p				
	采样时间	2022年(8月10日	采样频次		2
	二噁英类	样品检出限ρDL	实测质量浓度	ps 换算质量浓度p	1.0	当量(TEQ) 量浓度
	1000		ng/m³		1-TEF	ng TEQ/m
杂	2,3,7,8-T ₄ CDD	1000.0	N.D.	N.D.	1	0.00005
多氯代	1,2,3,7,8-P5CDD	0.0005	N.D.	N.D.	0.5	0.0001
-	1,2,3,4,7,8-H ₆ CDD	0.0008	N.D.	N.D.	0.1	0.00004
一苯并一对一一	1,2,3,6,7,8-H ₆ CDD	0.0002	N.D.	N.D.	0.1	0.00001
	1,2,3,7,8,9-H ₆ CDD	0.0008	N.D.	N.D.	0.1	0.00004
二噁英	1,2,3,4,6,7,8-H ₇ CDD	0.0005	N.D.	N.D.	0.01	0.000003
英	O ₈ CDD	0.0008	N.D.	N.D.	0.001	0.0000004
	2,3,7,8-T ₄ CDF	0.0001	0.013	0.017	0.1	0,002
	1,2,3,7,8-P ₅ CDF	0.0008	0.011	0.015	0.05	0.0007
	2,3,4,7,8-P ₅ CDF	0.0005	0.015	0.020	0.5	0.010
多氣	1,2,3,4,7,8-H ₆ CDF	0.0005	0.008	0.010	0.1	0.001
代	1,2,3,6,7,8-H ₆ CDF	0.0008	0,006	0,008	0.1	0.0008
代二苯并呋喃	1,2,3,7,8,9-H ₆ CDF	0.0005	N.D.	N.D.	0.1	0.00003
呋喃	2,3,4,6,7,8-H ₆ CDF	0.0005	0.006	0.008	0.1	0.0008
	1,2,3,4,6,7,8-H ₇ CDF	0.001	0.018	0.024	0.01	0.0002
	1,2,3,4,7,8,9-H ₇ CDF	0.0008	N.D.	N.D.	0.01	0.000004
	O ₈ CDF	0.0008	N.D.	N.D.	100.0	0.0000004
(二噁英类总量 PCDDs+PCDFs)		Lekshe		****	0.016

注: 1.换算质量浓度(p): 二噁英类质量浓度的 10%含氧量换算值, ng/m^3 。 $p=(21-\phi_n(O_2))$ /[21- $\phi_s(O_2)$]*ps,式中 $\phi_n(O_2)$ =10, $\phi_s(O_2)$: 废气中含氧量=_12.8%。(若废气中氧气体积分数超过20%,则取 $\phi_s(O_2)$ =20)。

^{2.}毒性当量因子(TEF):采用国际毒性当量因子1-TEF定义。

^{3.}毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8,-T4CDD 质量浓度, ng/m3。

^{4.}样品量: 3.9194 m3(标准状态); 分样比例 f; 50%。

^{5,}当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

	样品编号		IHB22080	502YQT2D2-3		
	检测点位		一号窑尾	废气排气筒◎2		
	采样时间	2022年(8月10日	采样频次	3	
	二噁英类	样品检出限ρDL	实测质量浓度ps	换算质量浓度ρ		当量(TEQ) 量浓度
	7.5		ng/m³		I-TEF	ng TEQ/m
*	2,3,7,8-T ₄ CDD	0.0001	N.D.	N.D.	1	0.00006
多氯代	1,2,3,7,8-P ₅ CDD	0.0006	N.D.	N.D.	0,5	0,0001
一苯并一	1,2,3,4,7,8-H ₆ CDD	0.0008	N.D.	N.D.	0.1	0.00004
	1,2,3,6,7,8-H ₆ CDD	0.0002	N.D.	N.D.	0.1	0.00001
对	1,2,3,7,8,9-H ₆ CDD	8000,0	N.D.	N.D.	0.1	0.00004
二噁英	1,2,3,4,6,7,8-H ₇ CDD	0,0006	N.D.	N.D.	0.01	0.000003
英	O ₈ CDD	0,0008	N.D.	N.D.	100.0	0.000000
	2,3,7,8-T ₄ CDF	0.0001	0.014	0.018	0.1	0.002
	1,2,3,7,8-P ₅ CDF	0.0008	0.011	0.014	0.05	0.0007
	2,3,4,7,8-P ₅ CDF	0.0006	0.015	0.019	0,5	0.010
多無	1,2,3,4,7,8-H ₆ CDF	0.0006	0.007	0.009	0.1	0,0009
多飢代二	1,2,3,6,7,8-H ₆ CDF	0.0008	0.007	0.009	0.1	0.0009
一苯并呋喃	1,2,3,7,8,9-H ₆ CDF	0.0006	0,003	0.004	0.1	0.0004
呋喃	2,3,4,6,7,8-H ₆ CDF	0.0006	0,006	0,007	0.1	0.0007
	1,2,3,4,6,7,8-H ₇ CDF	0.001	0.017	0.022	0.01	0.0002
	1,2,3,4,7,8,9-H ₇ CDF	0.0008	N.D.	N.D.	0.01	0.000004
	O ₈ CDF	0.0008	N.D.	N.D.	0.001	0.0000004
(二噁英类总量 PCDDs+PCDFs)	*****	*****	5355	-	0.015

注: 1.换算质量浓度 (p): 二噁英类质量浓度的 10%含氧量换算值, ng/m^3 。 $p=(21-\phi_0(O_2))$ /[21- $\phi_s(O_2)$]*ps,式中 $\phi_0(O_2)$ =10, $\phi_s(O_2)$: 废气中含氧量=_12.5%。(若废气中氧气体积分数超过20%,则取 $\phi_s(O_2)$ =20)。

^{2.}毒性当量因子(TEF): 采用国际毒性当量因子 1-TEF 定义。

^{3.}毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8,-T₄CDD 质量浓度, ng/m3。

^{4.}样品量: _3.6321 m3(标准状态); 分样比例 f; 50%。

^{5.}当实测质量浓度低于检出限时用"N.D."表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

附表 2:环境空气二噁英类单项检测结果

	样品编号		IHB22080502	HQT1D1			
	测定点位		冯坳上 24	10 1			
	采样时间	2022 年	08月09日09	2:28~ 次日 03:	毒性当量(TEQ)质量浓度 I-TEF pg TEQ/n 1 0.0004 0.5 0.0004		
	二噁英类	样品检出限pDL	实测浓度ρ	毒性当量(T	EQ)质量浓度		
	一点头头	pg/m	3	1-TEF	pg TEQ/m		
多	2,3,7,8-T ₄ CDD	8000.0	N.D.	1	0.0004		
多氟代	1,2,3,7,8-P ₅ CDD	0.002	N.D.	0.5	0.0004		
-	1,2,3,4,7,8-H ₆ CDD	0,003	0.004	0.1	0.0004		
	1,2,3,6,7,8-H ₆ CDD	0.003	0.006	0.1	0.0006		
	1,2,3,7,8,9-H ₆ CDD	0.005	0.005	1.0	0.0005		
一順	1,2,3,4,6,7,8-H ₇ CDD	0.003	0.093	0.01	0.0009		
一噁英	O ₈ CDD	0.005	0.906	0.001	0.0009		
	2,3,7,8-T ₄ CDF	0.0009	0.016	0,1	0,002		
	1,2,3,7,8-P ₅ CDF	0.006	0.020	0.05	0.001		
	2,3,4,7,8-P ₅ CDF	0.003	0.013	0.5	0.006		
多氯	1,2,3,4,7,8-H ₆ CDF	0.006	0,026	0.1	0.003		
代	1,2,3,6,7,8-H ₆ CDF	0,002	0.020	0.1	0.002		
多氯代二苯并呋喃	1,2,3,7,8,9-H ₆ CDF	0,005	N.D.	0.1	0.0002		
快喷	2,3,4,6,7,8-H ₆ CDF	0.005	0,014	0.1	0.001		
न्स	1,2,3,4,6,7,8-H ₇ CDF	0.005	0.082	0.01	0.0008		
	1,2,3,4,7,8,9-H ₇ CDF	0.005	N.D.	0.01	0.00002		
	O ₈ CDF	0.008	0.040	100.0	0.00004		
(二噁英类总量 (PCDDs+PCDFs)	nation .			0.020		

注: 1.实测质量浓度(p): 二噁英类质量浓度测定值, pg/m3。

^{2.}毒性当量因子 (TEF) 采用国际毒性当量因子 1-TEF 定义。

^{3.}毒性当量 (TEQ) 质量浓度: 折算为相当于 2,3,7,8,-T4CDD 质量浓度, pg/m3。

^{4.}样品量: 665.3028 m³(标准状态)。

^{5.}当实测质量浓度低于检出限时用"N.D."表示, 计算毒性当量(TEQ) 质量浓度时以 1/2 检出限计算。

	样品编号		IHB22080502	HQT2D1	
	测定点位	冯坳上 2#●1 2022 年 08 月 10 日 11:02~ 次日 05:02			
	采样时间	2022 年	三08月10日1	1:02~ 次日 05:	02
	min the A44	样品检出限ρDL	实测浓度ρ	毒性当量(T	EQ)质量浓度
	二噁英类	pg/m	3	I-TEF	pg TEQ/m
多	2,3,7,8-T ₄ CDD	0.0007	N.D.	1	0.0004
多氯代	1,2,3,7,8-P ₅ CDD	0.001	N.D.	0.5	0.0004
	1,2,3,4,7,8-H ₆ CDD	0.003	0.006	0.1	0.0006
一苯并一对	1,2,3,6,7,8-H ₆ CDD	0.003	0.012	0.1	0.001
对	1,2,3,7,8,9-H ₆ CDD	0.004	0.010	0.1	0.001
点	1,2,3,4,6,7,8-H ₇ CDD	0.003	0.082	0.01	0.0008
噁英	O ₈ CDD	0.004	0.201	0.001	0.0002
	2,3,7,8-T ₄ CDF	0.0009	0.048	0.1	0.005
	1,2,3,7,8-P ₅ CDF	0.006	0.059	0.05	0.003
	2,3,4,7,8-P ₅ CDF	0.003	0.050	0.5	0.025
多氯	1,2,3,4,7,8-H ₆ CDF	0.006	0.101	0.1	0.010
代	1,2,3,6,7,8-H ₆ CDF	0.001	0.057	0.1	0.006
多氯代二苯并呋喃	1,2,3,7,8,9-H ₆ CDF	0.004	0.020	0.1	0.002
呋喃	2,3,4,6,7,8-H ₆ CDF	0.004	0.044	0.1	0.004
113	1,2,3,4,6,7,8-H ₇ CDF	0.004	0.269	0.01	0.003
	1,2,3,4,7,8,9-H ₇ CDF	0.004	0.029	0.01	0.0003
	O ₈ CDF	0.007	0.344	0.001	0.0003
(二噁英类总量 PCDDs+PCDFs)	tion 1			0.063

注: 1.实测质量浓度(p): 二噁英类质量浓度测定值, pg/m3。

^{2.}毒性当量因子(TEF)采用国际毒性当量因子 I-TEF 定义。

^{3.}毒性当量 (TEQ) 质量浓度: 折算为相当于 2,3,7,8,-T₄CDD 质量浓度, pg/m³。

^{4.}样品量: 667.0343 m3(标准状态)。

^{5.}当实测质量浓度低于检出限时用"N.D."表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

附表 3:土壤二噁英类单项检测结果

	样品编号		IHB22080502	TRD1				
	测定点位	厂区南侧	ng/kg I-TEF ng TE 0.03 N.D. 1 0.0 0.1 N.D. 0.5 0.0 0.2 N.D. 0.1 0.0 0.3 N.D. 0.1 0.0 0.3 0.430 0.1 0.0	n)				
	采样时间		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2022年08月		
	二噁英类	样品检出限pDL	实测浓度ρ	毒性当量(T	EQ)质量浓度			
	一场失失	ng/k	g	I-TEF	ng TEQ/kg			
多	2,3,7,8-T ₄ CDD	0.03	N.D.	1	0.02			
多氯代	1,2,3,7,8-P ₅ CDD	0.1	N.D.	0,5	0.03			
二苯	1,2,3,4,7,8-H ₆ CDD	0.2	N.D.	0,1	0.01			
二苯并—	1,2,3,6,7,8-H ₆ CDD	0.3	N.D.	0.1	0.02			
对	1,2,3,7,8,9-H ₆ CDD	0.3	0.430	0.1	0.04			
二噁英	1,2,3,4,6,7,8-H ₇ CDD	0.4	6.47	0.01	0.06			
英	O ₈ CDD	0.3	250	0.001	0.25			
	2,3,7,8-T ₄ CDF	0.03	1.22	0.1	0.12			
	1,2,3,7,8-P ₅ CDF	0.3	1.14	0.05	0.06			
	2,3,4,7,8-P ₅ CDF	0.3	0.977	0.5	0.49			
多氯	1,2,3,4,7,8-H ₆ CDF	0.3	1.29	0.1	0.13			
多氯代二苯并呋喃	1,2,3,6,7,8-H ₆ CDF	0.4	1.18	0.1	0.12			
苯并	1,2,3,7,8,9-H ₆ CDF	0.3	0.605	0.1	0.06			
呋喃	2,3,4,6,7,8-H ₆ CDF	0.3	1.15	0.1	0.11			
199	1,2,3,4,6,7,8-H ₇ CDF	0.3	4.38	10.0	0.04			
	1,2,3,4,7,8,9-H ₇ CDF	0.3	N.D.	0.01	0.002			
	O ₈ CDF	0,2	2.23	0.001	0.002			
(二噁英类总量 PCDDs+PCDFs)				1.6			

注: 1.毒性当量因子 (TEF) 采用国际毒性当量因子 I-TEF 定义。

^{2.}毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8,-T4CDD 质量浓度, ng/kg。

^{3.}样品量: 10.02 g; 样品含水率ω: 1.7 %。

^{4.}当实测质量浓度低于检出限时用"N.D."表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

	样品编号		IHB22080502	TRD2		
	测定点位					
	采样时间		09 日			
	二噁英类	样品检出限pDL	实测浓度ρ	毒性当量(T	EQ)质量浓度	
	一零头头	ng/kg	g	1-TEF ng TEQ		
多	2,3,7,8-T ₄ CDD	0.03	N.D.	1	0.02	
多氯代	1,2,3,7,8-P ₅ CDD	0.1	N.D.	0.5	0.03	
	1,2,3,4,7,8-H ₆ CDD	0.2	N.D.	0.1	0.01	
一苯并一对一二噁英	1,2,3,6,7,8-H ₆ CDD	0.3	N.D.	0.1	0.02	
对	1,2,3,7,8,9-H ₆ CDD	0.3	N.D.	0.1	0.02	
183	1,2,3,4,6,7,8-H ₇ CDD	0.4	0.965	0.01	0.01	
英	O ₈ CDD	0.3	161	0.001	0.16	
	2,3,7,8-T ₄ CDF	0.03	0.561	0.1	0.06	
	1,2,3,7,8-P ₅ CDF	0.3	N.D.	0.05	0.008	
	2,3,4,7,8-PsCDF	0.3	N.D.	0.5	0.08	
多氮	1,2,3,4,7,8-H ₆ CDF	0.3	N.D.	0.1	0.02	
多氯代二苯并呋喃	1,2,3,6,7,8-H ₆ CDF	0,4	N.D.	0.1	0.02	
苯并	1,2,3,7,8,9-H ₆ CDF	0.3	N.D.	0.1	0.02	
呋喃	2,3,4,6,7,8-H ₆ CDF	0.3	N.D.	0.1	0.02	
.110	1,2,3,4,6,7,8-H ₇ CDF	0.3	N.D.	0.01	0.002	
	1,2,3,4,7,8,9-H ₇ CDF	0.3	N.D.	0.01	0.002	
	O ₈ CDF	0.2	N.D.	0.001	0.0001	
(二噁英类总量 PCDDs+PCDFs)			-	0.46	

注: 1.毒性当量因子 (TEF) 采用国际毒性当量因子 I-TEF 定义。

^{2.}毒性当量 (TEQ) 质量浓度: 折算为相当于 2,3,7,8,-T₄CDD 质量浓度, ng/kg。

^{3.}样品量: 10.02 g; 样品含水率ω: 1.7%。

^{4.}当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

样品编号			IHB22080502	TRD3	
	测定点位 厂内窑尾附近 1#口3 (表层样 0~0.2m)				
	采样时间	2022年08月09日			
	二噁英类	样品检出限ρDL	实测浓度ρ	毒性当量(T	EQ)质量浓度
	一场关头	ng/kg	g	1-TEF	ng TEQ/kg
多	2,3,7,8-T ₄ CDD	0.03	N.D.	1	0.02
多氯代	1,2,3,7,8-P ₅ CDD	0.1	N.D.	0.5	0.03
二苯并	1,2,3,4,7,8-H ₆ CDD	0.2	1.10	0.1	0,11
并一	1,2,3,6,7,8-H ₆ CDD	0,3	1.01	0.1	0.10
对	1,2,3,7,8,9-H ₆ CDD	0.3	N.D.	0.1	0.02
一座	1,2,3,4,6,7,8-H ₇ CDD	0,4	4.90	0.01	0.05
一噁英	O ₈ CDD	0,3	224	0,001	0.22
	2,3,7,8-T ₄ CDF	0.03	0,552	0.1	0.06
	1,2,3,7,8-P ₅ CDF	0.3	N.D.	0.05	0.008
	2,3,4,7,8-P5CDF	0.3	N.D.	0.5	0.08
多氣	1,2,3,4,7,8-H ₆ CDF	0,3	N.D.	0.1	0.02
多氯代二苯并呋喃	1,2,3,6,7,8-H ₆ CDF	0.4	N.D.	0.1	0.02
苯并	1,2,3,7,8,9-H ₆ CDF	0.3	N.D.	0.1	0.02
呋喃	2,3,4,6,7,8-H ₆ CDF	0,3	N.D.	0.1	0.02
rigin	1,2,3,4,6,7,8-H ₇ CDF	0,3	N,D,	0.01	0.002
	1,2,3,4,7,8,9-H ₇ CDF	0.3	N.D.	0.01	0.002
	O ₈ CDF	0.2	1.61	0.001	0.002
(二噁英类总量 PCDDs+PCDFs)	in.		hanne .	0.75

注: 1.毒性当量因子 (TEF) 采用国际毒性当量因子 I-TEF 定义。

^{4.}当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

^{2.}毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8,-T₄CDD 质量浓度, ng/kg。

^{3.}样品量: 10.02 g; 样品含水率ω: 3.2%。

	样品编号		IHB22080502TI	RD3 平行	
	测定点位	ng/kg I-TEF ng T 0.03 N.D. 1 0 0.1 N.D. 0.5 0 0.2 0.968 0.1 0 0.3 0.880 0.1 0 0.3 N.D. 0.1 0 0.4 4.12 0.01 0 0.3 191 0.001 0 0.03 0.562 0.1 0)		
	采样时间		2022年08月	#性当量(TEQ)质量液, I-TEF ng TEQ/ 1 0.02 0.5 0.03 0.1 0.10 0.1 0.09 0.1 0.02 0.01 0.04 0.001 0.19 0.1 0.06 0.05 0.008	
	二噁英类	样品检出限pDL	实测浓度ρ	The second secon	
	一物关关	ng/kg	g	1-TEF	ng TEQ/kg
多	2,3,7,8-T ₄ CDD	0.03	N.D.	1.	0.02
多氯代	1,2,3,7,8-P ₅ CDD	0.1	N.D.	0.5	0.03
二苯	1,2,3,4,7,8-H ₆ CDD	0.2	0.968	0.1	0.10
二苯并一	1,2,3,6,7,8-H ₆ CDD	0,3	0.880	0.1	0.09
对	1,2,3,7,8,9-H ₆ CDD	0.3	N.D.	0.1	0.02
-	1,2,3,4,6,7,8-H ₇ CDD	0.4	4,12	0.01	0.04
噁英	O ₈ CDD	0.3	191	0.001	0.19
	2,3,7,8-T ₄ CDF	0.03	0.562	0.1	0.06
	1,2,3,7,8-P5CDF	0.3	N.D.	0.05	0.008
	2,3,4,7,8-P₅CDF	0.3	N.D.	0.5	0.08
多氯	1,2,3,4,7,8-H ₆ CDF	0,3	N,D,	0.1	0.02
多氯代二苯并呋喃	1,2,3,6,7,8-H ₆ CDF	0,4	N,D,	0.1	0.02
苯并	1,2,3,7,8,9-H ₆ CDF	0.3	N.D.	0.1	0.02
呋喃	2,3,4,6,7,8-H ₆ CDF	0.3	N.D.	0.1	0.02
1792	1,2,3,4,6,7,8-H ₇ CDF	0.3	N.D.	0.01	0.002
	1,2,3,4,7,8,9-H ₇ CDF	0.3	N.D.	0.01	0.002
	O ₈ CDF	0.2	1.63	0.001	0.002
(二噁英类总量 PCDDs+PCDFs)	·		1000	0.69

注: 1.毒性当量因子 (TEF) 采用国际毒性当量因子 1-TEF 定义。

^{2.}毒性当量 (TEQ) 质量浓度: 折算为相当于 2,3,7,8,-T₄CDD 质量浓度, ng/kg。

^{3.}样品量: <u>10.01g</u>; 样品含水率ω: <u>3.2</u>%。

^{4.}当实测质量浓度低于检出限时用"N.D."表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

附件1:有组织废气二噁英类质控措施

	样品编号		IHB2208050	2YQT1D1-1	
	内标名称	加标量 (pg)	实测绝对量 (pg)	回收率范围(%)	回收率(%)
	2378-TCDD 13C12 STD	500	473,05	25~164	95
内标名称	12378-PeCDD 13C12 STD	500	510.32	25~181	102
	123678-HxCDD 13C12 STD	500	505.97	28~130	101
	1234678-HpCDD 13C12 STD	500	373	23 ~ 140	75
	1000	592.82	17~157	59	
内怀	2378-TCDF 13C12 STD	500	400.78	24~169	80
	12378-PeCDF 13C12 STD	500	483.12	24~185	97
	123678-HxCDF 13C12 STD	500	391.87	28~130	78
	1234678-HpCDF 13C12 STD	500	309.58	28~143	62
	37Cl-2378-TCDD	500	504.89	70130	101
	23478-PeCDF 13C12 STD	500	456.39	70~130	91
	123478-HxCDD 13C12 STD	500	460.17	70 ~ 130	92
	123478-HxCDF 13C12 STD	500	549.25	70 - 130	110
	1234789-HpCDF 13C12 STD	500	422.06	70 ~ 130	84
-	样品编号		1HB2208050	2YQT1D1-2	
	内标名称	加标量 (pg)	实测绝对量 (pg)	回收率范围(%)	回收率(%)
	2378-TCDD 13C12 STD	500	429.14	25~164	86
	12378-PeCDD 13C12 STD	500	373.83	25~181	75
	123678-HxCDD 13C12 STD	500	409,81	28~130	82
	1234678-HpCDD 13C12 STD	500	311,67	23~140	62
	OCDD 13C12 STD	1000	468,41	17~157	47
内标	2378-TCDF 13C12 STD	500	364.41	24~169	73
	12378-PeCDF 13C12 STD	500	359.94	24~185	72
	123678-HxCDF 13C12 STD	500	321.08	28~130	64
	1234678-HpCDF 13C12 STD	500	248.44	28~143	50
内标 取标	37CI-2378-TCDD	500	479.02	70 ~ 130	96
	23478-PeCDF 13C12 STD	500	447.79	70 ~ 130	90
	123478-HxCDD 13C12 STD	500	454.22	70 - 130	91
內标	123478-HxCDF 13C12 STD	500	535.09	70 ~ 130	107
内标 取标 ¥	1234789-HpCDF 13C12 STD	500	436.61	70~130	87

	样品编号		IHB2208050	2YQTID1-3	
	内标名称	加标量 (pg)	实测绝对量 (pg)	回收率范围(%)	回收率(%)
	2378-TCDD 13C12 STD	500	611.1	25~164	122
	12378-PeCDD 13C12 STD	500	448	.25 ~ 181	90
	123678-HxCDD 13C12 STD	500	(pg)	118	
	1234678-HpCDD 13C12 STD	500	327.22	23~140	65
	OCDD 13C12 STD	1000	343.11	17-157	34
内称	2378-TCDF 13C12 STD	500	464.88	24 ~ 169	93
	12378-PeCDF 13C12 STD	500	(pg) (%) 611.1 25~164 448 25~181 588.33 28~130 327.22 23~140 343.11 17~157 464.88 24~169 437.43 24~185 472.39 28~130 290.51 28~143 470.46 70~130 447.53 70~130 454.79 70~130 393.38 70~130 1HB22080502YQT2D1-1 実測絶対量 回收率范围 (pg) (%) 496.36 25~164 363.76 25~181 496.55 28~130 311.5 23~140 411.91 17~157 408 24~169 348.08 24~169 348.08 24~169 348.08 24~169 348.08 24~169 348.08 24~169 348.08 24~185 397.36 28~130 277.38 28~130 453.45 70~130	87	
	123678-HxCDF 13C12 STD	500	472.39	28 ~ 130	94
提内 采内 提内 采内取标 联标	1234678-HpCDF 13C12 STD	500	290.51	28~143	58
	37Cl-2378-TCDD	500	470.46	70~130	94
	23478-PeCDF 13C12 STD	500	447.53	70~130	90
	123478-HxCDD 13C12 STD	500	454.79	70~130	91
	123478-HxCDF 13C12 STD	500	547.1	70 ~ 130	109
	1234789-HpCDF 13C12 STD	500	393.38	70~130	79
	样品编号		IHB2208050	2YQT2D1-1	
-	内标名称	加标量(pg)	100	A STATE OF THE STA	回收率(%)
	2378-TCDD 13C12 STD			The state of the s	99
					73
	C 20 M M M M M M M M M M M M M M M M M M	_			99
			P. 01.5	23 ~ 140	62
提取	The second secon			17~157	41
内标	THE PERSON NAMED IN COLUMN	-	10000	24 ~ 169	82
		500		24 ~ 185	70
		500		28 ~ 130	79
	The state of the s	500	277.38	28 - 143	55
	The first design as the state of the	500	462.18	70 ~ 130	92
提取	500		70~130	92	
30.5	1234678-HpCDD 13C12 STD		70~130	91	
内标	THE RESERVE AND THE PERSON NAMED IN		772 11 11	100	108
				11 0.00	78

样品编号		IHB22080502YQT2D1-2				
	内标名称	加标量 (pg)	实测绝对量 (pg)	回收率范围(%)	回收率(%)	
	2378-TCDD 13C12 STD	500	619.64	25~164	124	
	12378-PeCDD 13C12 STD	500	471.06	25 ~ 181	94	
	123678-HxCDD 13C12 STD	500	483.16	28~130	97	
Jan the	1234678-HpCDD 13C12 STD	500	308.99	23 ~ 140	62	
提取内标	OCDD 13C12 STD	1000	456.86	17~157	46	
12140	2378-TCDF 13C12 STD	500	472.11	24 ~ 169	94	
	12378-PeCDF 13C12 STD	500	430.4	24 ~ 185	86	
	123678-HxCDF 13C12 STD	500	371,74	28~130	74	
	1234678-HpCDF 13C12 STD	500	271,14	28~143	54	
	37CI-2378-TCDD	500	485.52	70~130	97	
eer 154	23478-PeCDF 13C12 STD	500	482.09	70 ~ 130	96	
采样	123478-HxCDD 13C12 STD	500	459.47	70 - 130	92	
内标	123478-HxCDF 13C12 STD	500	547.98	70~130	110	
	1234789-HpCDF 13C12 STD	500	407.67	70~130	82	
	样品编号	IHB22080502YQT2D1-3				
1	内标名称	加标量 (pg)	实测绝对量 (pg)	回收率范围 (%)	回收率(%)	
	2378-TCDD 13C12 STD	500	508,41	25~164	102	
	12378-PeCDD 13C12 STD	500	358.2	25~181	72	
	123678-HxCDD 13C12 STD	500	484.34	28~130	97	
	1234678-HpCDD 13C12 STD	500	292.79	23 ~ 140	59	
提取	OCDD 13C12 STD	1000	374.44	17~157	37	
内标	2378-TCDF 13C12 STD	500	431.15	24~169	86	
	12378-PeCDF 13C12 STD	500	334.73	24~185	67	
	123678-HxCDF 13C12 STD	500	389.41	28~130	78	
	1234678-HpCDF 13C12 STD	500	252.94	28 ~ 143	51	
	37CI-2378-TCDD	500	396.52	70~130	79	
similar.	23478-PeCDF 13C12 STD	500	454.2	70~130	91	
采样	123478-HxCDD 13C12 STD	500	428,12	70 ~ 130	86	
内标	123478-HxCDF 13C12 STD	500	525.12	70~130	105	
	1234789-HpCDF 13C12 STD	500	382,45	70~130	76	

样品编号		IHB22080502YQT1D2-1				
	内标名称	加标量 (pg)	实测绝对量 (pg)	回收率范围(%)	回收率(%)	
	2378-TCDD 13C12 STD	500	649.42	25~164	130	
	12378-PeCDD 13C12 STD	500	677.36	25~181	135	
	123678-HxCDD 13C12 STD	500	612.77	28-130	123	
In no	1234678-HpCDD 13C12 STD	500	396.05	23 ~ 140	79	
提取	OCDD 13C12 STD	1000	592.23	17~157	59	
内标	2378-TCDF 13C12 STD	500	529.02	24 ~ 169	106	
	12378-PeCDF 13C12 STD	500	623.28	24 ~ 185	125	
	123678-HxCDF 13C12 STD	500	482.5	28~130	96	
	1234678-HpCDF 13C12 STD	500	333,12	28~143	67	
	37CI-2378-TCDD	500	476.87	70 ~ 130	95	
ta (ii)	23478-PeCDF 13C12 STD	500	469.06	70~130	94	
采样	123478-HxCDD 13C12 STD	500	445.9	70~130	89	
内标	123478-HxCDF 13C12 STD	500	534.14	70~130	107	
	1234789-HpCDF 13C12 STD	500	427.26	70~130	85	
	样品编号	1HB22080502YQT1D2-2				
-	内标名称	加标量 (pg)	实测绝对量 (pg)	回收率范围(%)	回收率(%)	
	2378-TCDD 13C12 STD	500	452.15	25~164	90	
	12378-PeCDD 13C12 STD	500	522.93	25~181	105	
	123678-HxCDD 13C12 STD	500	470.4	28~130	94	
	1234678-HpCDD 13C12 STD	500	295.85	23~140	59	
提取	OCDD 13C12 STD	1000	452.85	17~157	45	
内标	2378-TCDF 13C12 STD	500	317.37	24~169	63	
	12378-PeCDF 13C12 STD	500	338.91	24~185	68	
	123678-HxCDF 13C12 STD	500	368.19	28~130	74	
-	1234678-HpCDF 13C12 STD	500	252.1	28~143	50	
	37CI-2378-TCDD	500	459.87	70~130	92.	
	23478-PeCDF 13CI2 STD	500	596.75	70 ~ 130	119	
采样	123478-HxCDD 13C12 STD	500	467.73	70 ~ 130	94	
内标	123478-HxCDF 13C12 STD	500	528.86	70 ~ 130	106	
					1.111	

样品编号		IHB22080502YQT1D2-3				
	内标名称	加标量 (pg)	实测绝对量 (pg)	回收率范围(%)	回收率(%)	
	2378-TCDD 13C12 STD	500	479.5	25~164	96	
	12378-PeCDD 13C12 STD	500	638.97	25~181	128	
	123678-HxCDD 13C12 STD	500	494.51	28~130	99	
	1234678-HpCDD 13C12 STD	500	353.01	23~140	71	
提取	OCDD 13C12 STD	1000	521.3	17~157	52	
内标	2378-TCDF 13C12 STD	.500	379.32	24~169	76	
	12378-PeCDF 13C12 STD	500	379.21	24 ~ 185	76	
	123678-HxCDF 13C12 STD	500	397.24	28 ~ 130	79	
	1234678-HpCDF 13C12 STD	500	293.69	28~143	59	
	37CI-2378-TCDD	500	448.64	70 ~ 130	90	
Facility.	23478-PeCDF 13C12 STD	500	518.26	70 ~ 130	104	
采样	123478-HxCDD 13C12 STD	500	437.43	70~130	87	
内标	123478-HxCDF 13C12 STD	500	517.95	70~130	104	
	1234789-HpCDF 13C12 STD	500	394.77	70 - 130	79	
	样品编号	IHB22080502YQT2D2-1				
-	内标名称	加标量	实测绝对量	回收率范围	回收率	
_		(pg)	(pg)	(%)	(%)	
	2378-TCDD 13C12 STD	500	432.09	25~164	86	
	12378-PeCDD 13C12 STD	500	403,37	25 ~ 181	81	
	123678-HxCDD 13C12 STD	500	443.82	28~130	89	
提取	1234678-HpCDD 13C12 STD	500	328,53	23 ~ 140	66	
内标	OCDD 13C12 STD	1000	503,92	17~157	50	
77.0	2378-TCDF 13C12 STD	500	348.69	24~169	70	
	12378-PeCDF 13C12 STD	500	341.95	24~185	68	
	123678-HxCDF 13C12 STD	500	342.15	.28 ~ 130	68	
	1234678-HpCDF 13C12 STD	500	265.77	28~143	53	
	37Cl-2378-TCDD	500	492.57	70 130	99	
777. 13V	23478-PeCDF 13C12 STD	500	538.28	70 ~ 130	108	
采样 内标	123478-HxCDD 13C12 STD	500	461,9	70 ~ 130	92	
1340	123478-HxCDF 13C12 STD	500	540.34	70 ~ 130	108	
	1234789-HpCDF 13C12 STD	500	421.18	70~130	84	

样品编号		1HB22080502YQT2D2-2				
	内标名称	加标量 (pg)	实测绝对量 (pg)	回收率范围(%)	回收率(%)	
	2378-TCDD 13C12 STD	500	451.23	25~164	90	
	12378-PeCDD 13C12 STD	500	315,15	25~181	63	
	123678-HxCDD 13C12 STD	500	467.52	28~130	94	
Jer me	1234678-HpCDD 13C12 STD	500	300.5	23~140	60	
提取	OCDD 13C12 STD	1000	275.03	17~157	28	
内标	2378-TCDF 13C12 STD	500	334.51	24~169	67	
	12378-PeCDF 13C12 STD	500	279.93	24~185	56	
	123678-HxCDF 13C12 STD	500	405.05	28 ~ 130	81	
	1234678-HpCDF 13C12 STD	500	277.12	28 ~ 143	55	
	37Cl-2378-TCDD	500	455.77	70 ~ 130	91	
Sim.	23478-PeCDF 13C12 STD	500	447.38	70~130	89	
采样	123478-HxCDD 13C12 STD	500	447.38	70 ~ 130	89	
内标	123478-HxCDF 13C12 STD	500	493,92	70~130	99	
	1234789-HpCDF 13C12 STD	500	362.62	70~130	73	
	样品编号	IHB22080502YQT2D2-3				
1	内标名称	加标量 (pg)	实测绝对量 (pg)	回收率范围 (%)	回收率(%)	
_	2378-TCDD 13C12 STD	500	465.33	25~164	93	
	12378-PeCDD 13C12 STD	500	315.8	25 ~ 181	63	
	123678-HxCDD 13C12 STD	500	496.29	28 ~ 130	99	
	1234678-HpCDD 13C12 STD	500	251.19	23 ~ 140	50	
提取	OCDD 13C12 STD	1000	279.89	17~157	28	
内标	2378-TCDF 13C12 STD	500	366.73	24~169	73	
	12378-PeCDF 13C12 STD	500	310,24	24~185	62	
	123678-HxCDF 13C12 STD	500	261.99	28~130	52	
	1234678-HpCDF 13C12 STD	500	229.28	28~143	46	
	37CI-2378-TCDD	500	457.35	70 ~ 130	91	
	23478-PeCDF 13C12 STD	500	433.75	70~130	87	
采样	123478-HxCDD 13C12 STD	500	421.19	70~130	84	
内标	123478-HxCDF 13C12 STD	500	509,48	70 ~ 130	102	
	1234789-HpCDF 13C12 STD	6.64	22216	14-169		

附件 2: 环境空气二噁英类质控措施

	样品编号	IHB22080502HQT1D1				
内标名称		加标量 (pg)	实测绝对量 (pg)	回收率范围(%)	回收率(%)	
	2378-TCDD 13C12 STD	1000	828.6	25~164	83	
	12378-PeCDD 13C12 STD	1000	989.55	25 ~ 181	99	
	123678-HxCDD 13C12 STD	1000	830.2	28 ~ 130	83	
	1234678-HpCDD 13C12 STD	1000	555,97	23~140	56	
提取	OCDD 13C12 STD	2000	764.29	17~157	38	
内标	2378-TCDF 13C12 STD	1000	663.84	24~169	66	
	12378-PeCDF 13C12 STD	1000	916.92	24~185	92	
	123678-HxCDF 13C12 STD	1000	654.89	28 ~ 130	65	
	1234678-HpCDF 13C12 STD	1000	470.54	28~143	47	
	37CI-2378-TCDD	1000	1029.49	70~130	103	
CA IVI	23478-PeCDF 13C12 STD	1000	908.89	70~130	91	
采样	123478-HxCDD 13C12 STD	1000	960	70~130	96	
内标	123478-HxCDF 13C12 STD	1000	1089,92	70 ~ 130	109	
	1234789-HpCDF 13C12 STD	1000	829.57	70 ~ 130	83	
	样品编号	IHB22080502HQT2D1				
	内标名称	加标量 (pg)	实测绝对量 (pg)	回收率范围 (%)	回收率(%)	
	2378-TCDD 13C12 STD	1000	534.36	25~164	53	
	12378-PeCDD 13C12 STD	1000	439.16	25~181	44	
	123678-HxCDD 13C12 STD	1000	549.56	28~130	55	
Tario.	1234678-HpCDD 13C12 STD	1000	388,22	23 ~ 140	39	
提取	OCDD 13C12 STD	2000	583.42	17~157	29	
内标	2378-TCDF 13C12 STD	1000	423,27	24~169	42	
	12378-PeCDF 13C12 STD	1000	419.8	24 ~ 185	42	
	123678-HxCDF 13C12 STD	1000	426,05	28~130	43	
	1234678-HpCDF 13C12 STD	1000	320.21	28 143	32	
	37CI-2378-TCDD	1000	1035.15	70~130	104	
	23478-PeCDF 13C12 STD	1000	908,64	70~130	91	
采样	123478-HxCDD 13C12 STD	1000	975.48	70 ~ 130	98	
内标	123478-HxCDF 13C12 STD	1000	1128.46	70 ~ 130	113	
	1234789-HpCDF 13C12 STD	1000	940.43	70~130	94	

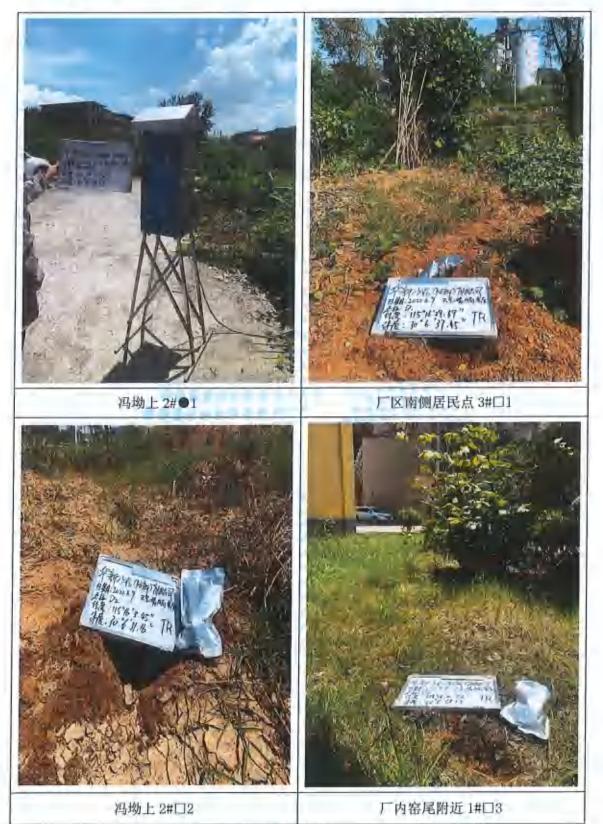
附件 3: 土壤二噁英类质控措施

样品编号		1HB22080502TRD1					
	内标名称	加标量 (pg)	实测绝对量 (pg)	回收率范围(%)	回收率(%)		
	2378-TCDD 13C12 STD	500	391.44	25 ≈ 164	78		
	2378-TCDF 13C12 STD	500	361.35	24~169	72		
	12378-PeCDD 13C12 STD	500	360.79	25~181	72		
	12378-PeCDF 13C12 STD	500	332.75	24~185	67		
	.23478-PeCDF 13C12 STD	500	318.59	21~178	64		
	123478-HxCDD 13C12 STD	500	434.66	32~141	87		
ART W.	123678-HxCDD 13C12 STD	500	477.2	28~130	95		
提取	123478-HxCDF 13C12 STD	500	439.62	32 ~ 141	88		
内标	123678-HxCDF 13C12 STD	500	388,94	28~130	78		
	123789-HxCDF 13C12 STD	500	352,19	29~147	70		
	234678-HxCDF 13C12 STD	500	383.7	28~136	77		
	1234678-HpCDD 13C12 STD	500	386.2	23 ~ 140	77		
	1234678-HpCDF 13C12 STD	500	349.86	28~143	70		
	1234789-HpCDF 13C12 STD	500	286.18	26~138	57		
	OCDD 13C12 STD	1000	672.19	17~157	67		
	样品编号		IHB22080502TRD2				
	内标名称	加标量	实测绝对量	回收率范围	回收率		
	1340-4240-	(pg)	(pg)	(%)	(%)		
	2378-TCDD 13C12 STD	500	383,65	25~164	77		
	2378-TCDF 13C12 STD	500	289,04	24~169	58		
	12378-PeCDD 13C12 STD	500	279.47	25 ~ 181	56		
	12378-PeCDF 13C12 STD	500	222.32	24 ~ 185	44		
	23478-PeCDF 13C12 STD	500	205.86	21~178	41		
	123478-HxCDD 13C12 STD	500	444.36	32~141	89		
提取	123678-HxCDD 13C12 STD	500	493.37	28~130	99		
内标	123478-HxCDF 13C12 STD	500	403.8	32~141	81		
	123678-HxCDF 13C12 STD	500	361.38	28 ~ 130	72		
	123789-HxCDF 13C12 STD	500	325.08	29 ~ 147	65		
	234678-HxCDF 13C12 STD	500	352.65	28 ~ 136	71		
	1234678-HpCDD 13C12 STD	500	394,16	23 ~ 140	79		
	1234678-HpCDF 13C12 STD	500	331.08	28 ~ 143	66		
	1234789-HpCDF 13C12 STD	500	266.78	26~138	53		
	OCDD 13C12 STD	1000	679.28	17~157	68		

样品编号		IHB22080502TRD3				
	内标名称	加标量 (pg)	实测绝对量 (pg)	回收率范围(%)	回收率(%)	
	2378-TCDD 13C12 STD	500	380.79	25~164	76	
	2378-TCDF 13C12 STD	500	262.98	24~169	53	
	12378-PeCDD 13C12 STD	.500	290.44	25~181	58	
	12378-PeCDF 13C12 STD	500	225.81	24~185	45	
	23478-PeCDF 13C12 STD	500	210.11	21~178	42	
	123478-HxCDD 13C12 STD	500	417.11	32~141	83	
No.	123678-HxCDD 13C12 STD	500	459.7	28 ~ 130	92	
提取	123478-HxCDF 13C12 STD	500	374.24	32 ~ 141	75	
内标	123678-HxCDF 13C12 STD	500	340.74	28 ~ 130	68	
	123789-HxCDF 13C12 STD	500	313.51	29 ~ 147	63	
	234678-HxCDF 13C12 STD	500	331.4	28 ~ 136	66	
	1234678-HpCDD 13C12 STD	500	384.84	23 ~ 140	77	
	1234678-HpCDF 13C12 STD	500	312.47	28~143	62	
	1234789-HpCDF 13C12 STD	500	264.42	26~138	53	
	OCDD 13C12 STD	1000	697.19	17~157	70	
	样品编号 IHB22080502TRD3 平					
	内标名称	加标量 (pg)	实测绝对量 (pg)	回收率范围(%)	回收率(%)	
	2378-TCDD 13C12 STD	500	433.1	25 ~ 164	87	
	2378-TCDF 13C12 STD	500	293.89	24 ~ 169	59	
	12378-PeCDD 13C12 STD	500	313.6	25~181	63	
	12378-PeCDF 13C12 STD	500	245.8	24~185	49	
	23478-PeCDF 13C12 STD	500	232.18	21~178	46	
	123478-HxCDD 13C12 STD	500	464.31	32~141	93	
提取	123678-HxCDD 13C12 STD	500	505.15	28~130	101	
内标	123478-HxCDF 13C12 STD	500	436,39	32~141	87	
	123678-HxCDF 13C12 STD	500	395.64	28~130	79	
	123789-HxCDF 13C12 STD	500	325.65	29 ~ 147	65	
	234678-HxCDF 13C12 STD	500	372,24	28~136	74	
	1234678-HpCDD 13C12 STD	500	335.85	23 ~ 140	67	
	1234678-HpCDF 13C12 STD	500	318.04	28 ~ 143	64	
	1234789-HpCDF 13C12 STD	500	214.52	26~138	43	
		_				

附图 1: 现场检测点位平面布置图

附图 2: 现场检测照片



二号窑尾废气排气筒◎1

号窑尾废气排气筒◎2

报告结束

华新水泥(阳新)有限公司 环保管理制度汇编

文件编号: 华阳字【2021】48号 (2021年5月第二次修订)

制 定 人:丁文

发布日期: 2021年6月16日

批准人:周国华

实施日期: 2021年6月16日

目 录

第一章 总则

第二章 环境保护责任制度

第三章 生产过程中环境保护管理制度

第四章 环保设施检修与管理制度

第五章 环境检测管理制度

第六章 环境控制制度

第七章 环保投诉事件处理及通报制度

第八章 环境保护培训教育管理制度

第九章 环保税缴纳与环保资金申请管理制度

第十章 环保监督与考核管理细则

第一章 总 则

一、目的

为遵循《中华人民共和国环境保护法》,加强公司环境保护管理,贯彻落实公司"安全第一、客户至上、结果导向、诚实守信、创新发展、以人为本"的企业价值观、执行"实施综合治污,推进清洁生产,构建和谐企业"的环境保护方针,达到"杜绝污染物事故性排放,在线监测日均值超标次数 0 次/年;各类污染物实现稳定达标排放,污染物排放总量控制在排污许可证总许可量范围内;除尘设备、脱硝设施和在线烟尘监测设备稳定运行,监测数据在国家规定的误差范围内;粉尘无组织达标排放,废水 100%循环利用;危险废物合规处置率 100%;环保观察行提报完成率 100%;环保月度整改完成率 100%;工厂环保培训年度目标完成率 100%;环保改进项目实施计划完成情况 100%,单位产品综合能耗每年降低 1%,重特大环境污染事故为 0"等环境管理目标,特制定本环保管理制度。

- 二、适应范围及权限
- 1、本制度汇编适用于华新水泥(阳新)有限公司范围内的环保管理。
- 2、名词术语
- 2.1 环境保护: 是指采取法律的、行政的、经济的、科学技术的各方面措施,合理地利用自然资源,防止对环境污染和破坏,以求保持和发展生态平衡,扩大有用资源的再生产,保障人类社会的发展。
- 2.2 环境污染:是指有害物质或因子进入环境,并在环境中扩散、迁移、转化,使环境系统的结构与功能发生变化,对人类以及其他生物的生存和发展产生不利影响的现象。
- 2.3 环境管理:是指在环境容量的允许下,以环境科学理论为基础、运用技术的、经济的、法律的、教育的和行政手段,对人类的社会经济活动进行管理。
- 2.4环境监测:是指间断或连续地测定环境中污染物的浓度,观察分析其变化和对环境影响的过程。
- 2.5 可持续发展: 既满足当代人的需要,又不对后代人满足需要的能力构成危害的发展。
- 3、本制度归口管理单位是技术环保部,行政管理部配合。在公司环保经理的技术指导下,进行环境保护工作。

三、附则

- 1、本制度由技术环保部起草并解释。
- 2、本制度自签发之日起执行。

第二章 环境保护责任制

1、目的

为明确公司各级人员的环境保护(简称环保)的职责,加强对环保的领导和管理,保障员工在生产劳动过程中的健康及环境不受污染,防止发生环境污染事故/事件,根据《环境保护法》等政策法规以及行业性法律法规的要求,制定本责任制。

- 2、适用范围
- 2.1 本责任制适用于华新水泥(阳新)有限公司范围内的环保管理。
- 2.2 各级管理人员必须贯彻"谁主管、谁负责;谁为主、谁负责。管生产,必须抓环保"的原则,公司、部门、车间的主要领导是公司、部门/分厂、车间环保工作的第一责任人,对公司、部门。分厂、车间的环保工作负主要责任,即"一把手负责制"。各级管理人员必须对公司、部门/分厂、车间下属人员贯彻执行本规定负责,真正做到纵向到底、横向到边,各负其责。
- 2.3 执行总经理为公司环境保护第一责任人,对企业的环境保护全面负责。 执行总经理授权公司环保委员会管理环保工作。技术环保部是公司环保工作的日 常管理机构。
 - 3、各级部门环保责任
 - 3.1 环保委员会环保职责
- 3.1.1 贯彻执行国家有关环境保护工作方针、政策、法令和上级有关规定,结合公司实际情况,制订和完善环境保护管理制度和工作计划,并负责具体实施。
- 3.1.2 根据国家环保部门排放标准,确定控制检测点,布置检测项目,汇集检测数据,遇有超标情况及时调整。
 - 3.1.3 落实上级有关部门下达的各项环保指令。监督环保管理制度的执行,

发现问题组织有关部门协商讨论,拿出解决问题的办法,随时向公司领导汇报。

- 3.1.4负责组织起草各项环保制度,并负责组织评审。
- 3.1.5负责对公司的设备、工艺等申请技术改造。
- 3.1.6负责对污染治理的技术交流和技术情报工作。
- 3.1.7 参加公司新建、扩建、技改项目的方案研究,设计审查和竣工验收, 严把"三同时"关。归口管理建设项目环保工作。
 - 3.1.8负责公司环保工作的宣传。
 - 3.2 技术环保部职责
- 3.2.1 技术环保部为公司环保工作的日常管理部门,环保委员会全面负责公司环保工作。
- 3.2.2 建立健全公司环境保护管理和环境保护设施设备运行管理制度,确保各类环境保护设施设备安全、有效、正常地运行。。
- 3.2.3 按照各级环保主管部门的要求,落实环保整改、环境信息公开、环保督查、环保相关报表及资料报送等对外日常性事务。。
- 3.2.4负责分解并落实推行公司的各项环境方针、政策;制定内部环保奖罚制度,并组织实施月度环保绩效考核。
- 3.2.5 负责协助(执行)总经理,推进新建生产设施(或项目)环保审批手续,包括立项、环境影响评价、项目竣工环保验收或备案。协调、配合推进公司水泥窑协同处置项目的可研、立项、环评、竣工环保验收等工作。
- 3.2.6负责监控工厂的环境业绩,评价工厂环保设施的运行及污染物排放情况,牵头组织目常环保自查及回顾性评价,制定环保改进方案和应对措施。
- 3.2.7负责监督检查各部门、车间、岗位环保工作,确定环保治理设施正常运行,在环保治理设施一旦出现故障时,有"三废"外排的生产工序必须采取应急措施,以尽可能减少污染物的排放。
- 3.2.8负责编制环境事故应急预案,并定期组织人员进行演练,协助上级环保部门进行环境污染事故的调查和处理工作。
- 3.2.9 负责环境管理体系运行管理、清洁生产审核、排污权核定/交易、排污许可证办理及执行报告、排污申报、环保档案汇编归档等工作。
 - 3.2.10 在(执行)总经理的领导下,组织实施年度环保风险评估,制定年

度环境保护目标,组织申报年度环保改进资本支出,落实年度环保改进。

- 3.2.11 负责落实环境自行监测、常规性监测、监督性监测、在线比对监测 等工作。
- 3.2.12 配合完成总部环保审计督查、区域环保检查,定期向总部、区域汇报环境业绩及环保业绩改善进度。
- 3.2.13 督促、协助生产、工艺、维修等部门落实环保工艺优化及环保设备的维护,保证环保设施连续正常运行,实现污染物稳定达标排放。
 - 3.2.14 参加总部、事业部组织的相关环保问题的研讨和培训。
 - 3.3 生产部门/分厂环保职责
- 3.3.1负责认真贯彻执行国家和地方各项环保法规、制度和标准。根据公司 环保管理制度,制定所属各生产车间的实施细则,并负责落实。
- 3.3.2 熟料分厂、水泥分厂、矿山分厂是公司生产环节环保的责任部门, 也是公司落实环保工作的重要部门,对工序发生的环保事故负责。
- 3.3.3 在保证生产安全的前提下组织指挥生产,发现违反环保管理制度的行为,应及时制止并根据污染情况及时做出处理,同时通知环保管理部门共同处理。
- 3.3.4负责处理公司环境污染事故和污染事件,应立即采取防止污染的应急措施,对重大、特大环境污染事件应在发生事故后立即汇报技术环保部负责人。协助环保部门进行环境污染事故的调查和处理。
- 3.3.5 贯彻操作纪律管理规定,搞好生产调度工作,杜绝或减少非检修计划停工和跑、冒、滴、漏等污染事件的发生。
- 3.3.6 贯彻落实环保设施设备运行管理制度,确保各类环境保护设施设备安全、有效、正常地运行。
- 3.3.7 采取有效措施,严格控制粉尘、废水、固体废弃物的排放,确保完成公司下达的污染物排放控制指标。
- 3.3.8 加强设备操作与管理,完成公司职能部门下达的节能、降耗、减噪等控制检修计划。
 - 3.3.9 配合环保部门做好环境监测工作。
 - 3.3.10 严格遵守公司劳动纪律和安全操作规程,确保安全生产,搞好现场

管理和责任区环境卫生工作。

- 3.4维修保全部环保职责
- 3.4.1 维修保全部应对公司项目上发生的各类污染事故负责,发生事故应及时报告并主动开展和配合事故调查,按事故"四不放过"的原则,开展环保教育和落实事故防范措施。
- 3.4.2 参加建设项目的设计审查,保证环保设施与主体工程同时施工、同时竣工验收。
- 3.4.3 在制订或审定有关设备制造、改造方案和编制设备检修计划时,应有相应的环保、减噪等措施内容,并确保实施,定期维护保养。
- 3.4.4 不得使用国家明令淘汰禁止使用的危及健康、污染环境的工艺、设备,逐步淘汰国家纳入名录的高污染、高耗能设备。
- 3.4.5负责定期、不定期检查公司产生污染的生产设施和污染防治设施运转情况。积极推广采用环保新技术、新设备、新工艺,解决公司污染防治工作中的难题,并做好有关资料搜集工作。
- 3.4.5 在签订基建施工合同时,要对承包施工的单位进行安全资质认定,并订立施工环保协议,明确其环保职责。
- 3.4.6 组织对外来施工人员进行入厂安全、环保教育和施工前的安全交底。
 - 3.5 行政管理部环保职责
- 3.5.1贯彻国家和地方政府环保、职业健康安全方面的法规,执行公司环保、职业健康安全方面的规章制度。
- 3.5.2 协助公司领导贯彻上级有关环保工作的指示,及时转发上级领导环保部门的有关材料,及时组织会审并打印、下发。
 - 3.5.3负责接待省、市、县环保部门的监督检查和指导。
 - 3.5.4 在采购办公用品时应优先考虑符合环保要求的产品。
- 3.5.5负责制定办公场所节约用水、用电、小车管理制度,配合环保应急预案并督促检查实施。
 - 3.5.6负责公司办公区、生活区内环境卫生管理工作。
 - 3.5.7负责食堂产生的食物垃圾及生活垃圾等的处理。

- 3.5.8负责定期对餐具进行消毒或检测化验。
- 3.5.9负责重大环境污染事故的现场保卫工作。
- 3.5.10 协助有关部门做好厂容厂貌管理工作。
- 3.5.11 负责环保应急预案的演练。在环保设施和场所发生应急情况的人员疏散保卫工作。
- 3.5.12 负责对威胁、打击环保管理人员的事件进行调查、处理,必要时移 交公安部门处理。
- 3.5.13 认真贯彻执行国家的法律法规,把抓好环保工作作为对员工考核的内容之一列入员工上岗、定级、评奖、晋升的考核条件中。在工资和奖金分配方案中,加入环保方面的要求。
- 3.5.14 负责定期组织环保技术业务培训,以提高工作人员的环境意识和水平。
 - 3.5.15负责协助环保部门做好环境污染突发事故的调查与处理工作。
 - 3.5.16 在公司企业管理总体规划中突出环保优先的思想。
- 3.5.17 在对各部门考核评比时,同时考核环保工作;编制经济责任制时, 把环保内容纳入责任制内容,坚持环保否决权。
 - 3.6 财务部环保职责
- 3.6.1 审查劳动防护用品、环保设施、教育等经费预算支出及合理使用情况。
- 3.6.2 支持配合《环保监督与考核管理细则》的执行,优先保证投入,审查各项环保奖励基金的支出。监督和保证环保费用的正常开支。
 - 3.6.3 建立环保费用专户,设立环保投资科目,按规定提取环保费用。
 - 3.7质量控制部环保职责
 - 3.7.1 配合技术环保部对主要的污染物排放进行数据及化学成分分析。
 - 3.7.2 配合环保部门做好环境监测工作。
 - 3.7.3 负责制定质量控制部环境监测管理制度,并贯彻实施。
- 3.7.4 负责制定质量控制部环境监测化学试剂、有毒、检测仪器设备、易燃 易爆物品使用管理制度,并贯彻实施。
 - 3.7.5负责检验过程中使用的有毒有害化学试剂储存使用,及排放前的无害

化处理工作。

- 3.8 采购部环保职责
- 3.8.1负责各部门环境保护工程项目设备、材料的订货、供应工作,并对采购产品的质量负责。
 - 3.8.2负责环境监测仪器、药品的及时采购和供应。
- 3.8.3 负责公司可回收利用的固体废弃物和危险废物的收集分类和处置工作。
 - 3.8.4 按检修计划及时供应环保治理项目所需设备、材料。
- 3.8.5 加强对购入设备、配件及有关原材料的质量管理,使其性能符合环保要求,确保生产产品是国家有关环境管理法律规定的环保产品。
- 3.8.6 督促检查供货方产品运输、装卸必须采取环境保护措施,严防环境污染事故的发生。
 - 4、各级管理人员环保责任
 - 4.1 执行总经理环保职责
- 4.1.1公司执行总经理是公司环境保护第一责任人,对企业的环境保护全面负责。必须认真贯彻执行国家和地方各项环保法规。负责组织对重大环境污染事故的调查处理。
- 4.1.2 执行总经理是公司环保事务最高执行者,有权调配全公司员工和环保物资。加强对环境保护活动的领导,决定环境保护方面的重要奖惩。
- 4.1.3 批准公司环保管理制度的实施、环保技术规程、环保措施、检修和长远规划。
- 4.1.4 按照环保法律的要求,结合公司实际工作,设立环保机构,配备专、兼职环保人员。定期听取环保部门的工作汇报,及时研究、解决或审批公司有关环境保护的重大问题。
- 4.1.5 执行总经理负责或安排其他人员配合上级主管部门进行检查、调查工作。
- 4.1.6 负责组织人员对产品进行环境影响评价、三废处理设计和施工以及环保"三同时"验收等工作。
 - 4.1.7 在发生紧急事故时,执行总经理是公司的总指挥,负责组成指挥部研

究、制订应急计划,组织应急小分队实施应对。

- 4.2 水泥工厂厂长环保职责
- 4.2.1 协同执行总经理做好日常各项环保工作。
- 4.2.2 水泥工厂厂长是环保事务的第二执行者,发生污染事故时,在执行总 经理不在现场的情况下,代替执行总经理指挥工作,执行环保应急预案,减少污 染。
- 4.2.3 定期召开环保工作会议,分析解决生产中存在的环保问题,定期研究水保和环保工作,并对水保和环保管理不足提出改进意见或建议。
- 4.2.4 监督检查部门对环境保护各项规章制度的执行情况,及时纠正失职和污染环境的行为。
- 4.2.5组织制订、修订环保规章制度、技术规程和编制环保技术措施检修计划,并认真组织实施。
- 4.2.6 统筹安排协调生产、发展和环境保护工作的关系,组织相关职能部门制定环境保护管理规章制度。组织管理人员学习有关文件和业务知识,检查环保工作的落实情况,总结推广环保工作先进经验,表彰先进单位及个人,提出环保工作努力方向与目标。
 - 4.2.7组织领导环境保护设施的试运转、验收等工作。
 - 4.2.8负责划分生产环保工作的管理范围。
- 4.2.9负责审定监测仪器配备范围及采购计划,使环境监测工作逐步走向现代化、规范化。
- 4.2.10 负责组织"三废"治理调研、试验等技术工作,做好"三废"治理方面的技工研究、技术交流和推广应用工作。
 - 4.2.11 参加环保事故的调查处理。
 - 4.3 技术环保部经理环保职责
 - 4.3.1 技术环保部经理是生产系统环保工作的第一责任人。
 - 4.3.2负责在主管生产的同时,计划、布置、检查、总结、评比环保工作。
 - 4.3.3负责职权范围内的环保检查工作,落实环保整改项目的实施。
- 4.3.4负责生产中产生的"三废"达标排放工作;全面完成公司下达的各项管理指标。

- 4.3.5 负责公司各项环保管理制度在生产系统贯彻实施,落实环保管理考核。
- 4.3.6 承担生产设备的运行、维护、保养的管理责任。生产现场管理、区域卫生管理。
- 4.3.7负责对公司环保工作做出合理性设计、建议,以改进公司内部各项环保工作的完善。
 - 4.3.8负责环境保护新技术,新工艺在公司的推广。
 - 4.3.9负责技术改造项目环境保护论证。
 - 4.3.10负责环境保护项目技术改造的方案提交。
 - 4.4 技术环保部副经理(技术环保部经理助理)环保职责
- 4.4.1 技术环保部副经理、技术环保部经理助理在技术环保部经理的领导下, 按职责分工负责工作范围内的环保工作。
 - 4.4.2负责做好排污申报工作,并协调好与环保等相关部门的关系。
- 4.4.3负责对污水水质状况化验、监控。按要求定期检测三废排放,进行三废污染评估分析等。
 - 4.4.4对公司的各部门排污情况有权进行检查监督。
- 4.4.5 负责审定清洁生产工作计划,将清洁生产纳入公司日常管理,巩固清洁生产成效,实现"节能、降耗、减污、增效"的目标。建设资源节约型、环境友好型企业。
 - 4.4.6负责制订考核办法,对环保工作人员进行考核。
- 4.4.7负责公司"三废"数据整理及数据跟踪工作。定期检测,发现问题与相关部门联系并解决,不能解决的,上报公司领导做出相应措施。
 - 4.4.8负责有关环境扰民问题的调查、调解工作。
 - 4.4.9 对公司下达的环保指标协助经理抓具体落实工作。
 - 4.4.10 协助经理抽查设备运行情况,对违反环保制度者进行处罚。
 - 4.4.11 协助经理起草环保管理制度,对执行过程中存在的问题进行修订。
 - 4.4.12负责各类环境统计报表,资料的填写、汇总、上报。
 - 4.4.13 协同行政管理部对职工进行环境保护知识的教育培训。
 - 4.5 环保设备经理、主管环保职责

- 4.5.1负责环境保护设施的运行、管理和维修档案的管理。
- 4.5.2负责环保装置巡检工、管理人员的技术培训工作。
- 4.5.3 安排技改项目时,严格执行环境保护有关规定,尽最大限度将污染物消除在生产过程中,减少或不产生新的污染。
 - 4.5.4负责编制环保设施、设备检修计划。
 - 4.5.5负责新建项目有关环境保护的技术方案委托工作。
 - 4.6 生产部门经理环保职责
 - 4.6.1 生产部门经理是生产部门环保工作的第一责任人。
- 4.6.2认真宣传、执行环保的方针政策、法律法规,并监督检查各部门,特别是生产工序的执行情况。
- 4.6.3 负责配合技术环保部制定环保管理制度及各种设备维修、改造计划。
 - 4.6.4负责配合上级主管部门进行检查和调查工作。
 - 4.6.5 配合技术环保部经理、副经理处理各种应急事务。
- 4.6.6 定期或不定期组织人员对全公司的环保设施的运营进行检查,发现隐患应立即上报并组织人员进行整改,落实清洁生产工作计划。
 - 4.6.7 对环保有贡献者及事故责任者提出奖惩意见。
 - 4.6.8负责组织环保事故的调查处理工作。
 - 4.6.9负责组织、协调环保的监测工作。
 - 4.7 财务部经理(副经理)环保职责
- 4.7.1 严格财务制度,确保环保措施费用的支出和合理使用,不准挪做他用。
 - 4.7.2 建立环保措施费用台帐。
 - 4.7.3 参加公司重大环保会议及其他重大环保管理活动。
 - 4.7.4负责对综合利用产品、回收利用的物资进行单独计算成本和利润。
 - 4.7.5负责对环保方面合同管理及费用监审。
 - 4.7.6负责安排环保经费,确保环保治理经费的落实,及时缴纳排污费。
 - 4.7.7参加重大环保事故的调查处理。
 - 4.8 行政管理部经理(副经理)环保职责

- 4.8.1认真宣传贯彻环保的方针、政策、法律法规及工程部环境保护管理办法。
- 4.8.2负责办公区、后勤区环保工作,协助公司领导贯彻执行上级有关环保管理指示。
- 4.8.3 积极协助公司领导协调解决环保管理方面存在的问题,保证工作中的各种需要及事故处理中的相关保障措施。
- 4.8.4负责公司领导主持的有关环保会议协调工作,协助公司技术环保管理部门登记、印制有关环保文件。
- 4.8.5负责审核环境管理培训教育计划,安排组织新入厂员工的环保知识的教育培训。
 - 4.8.6 配合技术环保部执行环境保护的奖励和处罚。
 - 4.8.7负责生产区域环境绿化与环境卫生的规划与垃圾外运。
 - 4.8.8参加重大环保事故的调查处理。
- 4.8.9负责环保应急预案的演练。在环保设施和场所发生应急情况的人员疏散保卫工作。
- 4.8.10 负责对威胁、打击环保管理人员的事件进行调查、处理,必要时移交公安部门处理。
 - 4.8.11参加重大环保事故的调查处理。
 - 4.9 采购经理(副经理)环保职责
- 4.9.1 认真宣传贯彻环境保护的方针、政策、法律法规及公司环境保护管理办法:对本部门的环保工作全面负责。
- 4.9.2参加公司环保会议及环境检查,并对环保管理不足提出改进意见或建议。
- 4.9.3及时组织进购环境保护工程项目设备、材料,并对采购产品的质量负责。
 - 4.9.4 及时组织进购环境监测仪器、药品。
 - 4.9.5及时收集分类和处置公司可回收利用的固体废弃物和危险废物。
 - 4.9.6负责重大环境污染事故的现场保卫工作。
 - 4.9.7 协助有关部门做好厂容厂貌管理工作。

- 4.10 质量控制部经理(副经理)环保职责
- 4.10.1 认真贯彻执行环保的方针、政策、法律法规及公司环境保护管理办法。
 - 4.10.2全面负责质量控制部的环保管理工作。
- 4.10.3 领导和组织本部门员工配合环境保护工作,提高三废成分分析技能, 努力改善质量控制部工作条件。
- 4.10.4 负责质量控制部仪器、物品的使用保管工作,并采取措施,防止环保事故的发生。
 - 4.10.5参加重大环保事故的调查处理。
 - 4.11 班组长环保职责
 - 4.11.1 班组长是本班组环保工作的第一责任人。
- 4.11.2 严格履行岗位职责,重点巡检设备运行情况,负责本班日常的环保管理工作。做到日常文明生产、清洁生产。
- 4.11.3 严格执行岗位操作规程,对所属设备加强管理,保持良好运行状态。
- 4.11.4 设备、设施发生意外事故,要积极组织力量抢救,并立即报告生产领导,认真分析原因,制定防范措施。
- 4.11.5 发生事故及时报告,保护现场,采取应急措施,防止事故扩大。参与当班发生的环保事故调查。
 - 4.11.6 检查工艺指标、设备运行中的环保管理制度执行情况。
- 4.11.7 组织班组员工学习和公司的环境保护管理办法,遵守适用的环保法律法规,杜绝违章,并积极支持工段的环保工作。
 - 4.12 环境保护管理委员会成员环保职责
 - 4.12.1负责研究制定公司环境保护工作目标、重大政策和措施。
 - 4.12.2 协调解决重大环境问题。
 - 4.12.3 对基层单位的环境保护工作情况进行监督检查。
 - 4.12.4参与公司污染事故的调查、分析、处理并负责上报。
 - 4.13 其它职能部门人员环保职责
 - 4.13.1 职能部门人员应对所在办公地点所产生的办公废物应由打扫人按照

指定地点堆放,并由行政管理部负责人监督。

- 4.13.2 对于因业务关系所在公司范围内的外来人员,职能部门人员有责任对其违反环保管理制度的行为进行制止、劝说,情况严重的追究其责任。
- 4.13.3 对于环保部门对公司的环保宣传,职能部门人员应以身作则,起带头作用,以加大宣传力度。提高公司环保工作的进程。
- 4.13.4 职能部门人员应对公司环保工作多提宝贵可行性意见,共同关注公司环保工作。
 - 5、环保管理机构人员设置

在公司执行总经理的领导下,公司设环境保护管理委员会,由公司执行总经理任组长,水泥工厂厂长、行政副总经理等任副组长,各职能部门负责人任组员。

- 6、监督与检查
- 6.1 本制度由技术环保部负责对实施情况进行检查监督。
- 6.2 环保委员会有权对不落实的部门或个人进行处罚。
- 6.3 各级管理部门负责根据本责任制度进行目标责任分解,并纳入公司经济责任制、岗位责任制中进行考核。

第三章 生产过程中环境保护管理制度

1、目的

为了加强设备在生产过程中粉尘排放管理,及时投运设备,合理控制工艺参数,将粉尘排放浓度降低在最小值,保障环境不受污染,制定本管理制度。

- 2、适用范围
- 2.1 本规定适用于华新水泥(阳新)有限公司生产各设备在生产过程中的管理。
 - 2.2 生产过程中环境保护管理是指三级收尘设备巡检管理。
 - 3、职责
- 3.1 巡检是搞好环保的途径,目的是发现、查明、整改各种隐患,制止各种违章作业。保持环保工作正常、稳定地运营。
- 3.2 维修保全部、矿山分厂、熟料分厂、水泥分厂及各部门负责人应不定期对各部门环保工作及设备运行进行检查。
- 3.3 技术环保部每月组织对公司环保工作进行检查,发现问题及时作出解决方案。
 - 3.4 各生产部门负责职责范围内环境保护工作的监督管理。
 - 3.5 各班组长负责所管辖区域内环境保护工作的实施管理。
 - 3.6维修保全部负责供水、排水及循环水技术改造、管网维护保养的管理。
 - 4、一般规定
- 4.1 加强现有生产设备的技术管理,消除跑、冒、滴、漏,最大限度地利用 资源,使污染物在生产过程中不断减少或消除。
- 4.2 生产过程中必须第一时间投运设备,生产部门负责不定时巡检,发现不投运、排放超标、设备跳停等问题要进行处罚。
- 4.3 不能处理的设备问题,由技术环保部提出技术改造方案,报公司领导审批实施。
- 4.4 各部门负责管辖区废水、粉尘、废渣等污染物采取有效措施进行处理, 粉尘排放浓度要达到环保控制指标。
 - 4.5 各班组加强设备的运行管理,坚持巡回检查,确保设备正常运行:设备

的检修, 必须列入检修计划内, 明确检修质量, 减少环境污染。

- 4.6 在生产异常情况下,若有紧急情况,需要临时排放的,在5分钟之内要向技术环保部口头汇报。
- 4.7 维修保全部加强对设备润滑管理,防止设备加油、换油造成的油污染, 废油按公司有关规定回收处理。
- 4.8 质量控制部使用的酸碱有毒有害物的药品,应加强管理,妥善处理残液、废液。严禁采取稀释、深埋等办法处理。
- 4.9 熟料分厂、水泥分厂负责物料堆场的管理。供应户运输车辆运往公司指定堆场,要按照规定的路线,采取防洒、防漏、防扬等运输措施,对道路定期采取洒水降尘措施,防止物料二次扬尘污染。

第四章 环保设施检修与管理制度

1、目的

为了加强设备的检修与管理,及时排除设备各种故障,提高设备运转率,保障环境不受污染,制定本管理制度。

- 2、适用范围
- 2.1 本规定适用于华新水泥(阳新)有限公司生产各设备检修与管理。
- 2.2 设备检修管理是指检修维护单位人员在检维修过程中的环境行为进行监督管理,对外协技术改造人员的环境行为监督管理。
 - 3、设备的范围
 - 3.1 废水处理设备、废水处理回收设备、废水循环利用设备。
 - 3.2 粉尘处理设备,除尘设备、粉尘回收设备。
 - 3.3 废渣、固体废弃物等综合利用设备。
 - 3.4 噪音防治设施及设备。
 - 3.5 凡属于以治理污染为主要目的进行技术改造所增加的收尘设备。
 - 4、职责
- 4.1 验收合格的设备,转入生产工序的固定资产管理,由相关部门负责设备的运行和管理。
- 4.2 技术环保部负责环境保护设备工艺条件的控制管理,以确保环境保护设备正常运行。
- 4.3 技术环保部负责监督、检查各环保设备的管理,并建立公司环保设备台帐。
- 4.4 技术环保部按照年度环境监测计划对有关环保设备的运行情况进行监督性监测,监测结果存档和报生产部门各一份。
- 4.5 技术环保部和维修保全部负责对环保设备的维护、检修,以确保设备的 长期稳定运行。
- 4.6 技术环保部对公司人员在检维修过程中的环境行为进行监督管理,对外协技术改造人员的环境行为具体负责。

5、一般规定

- 5.1 环保设备正式投运前,应按照设备竣工验收的有关规定和程序进行验收, 经验收合格后方可投入运行。
- 5.2 环保设备所属分厂要执行技术环保部下发的生产设备管理和运行相关指标,确保设备与主机设备同时投入运行。
- 5.3 对设备的运行,必须严格控制工艺参数,严肃工艺纪律和操作规程等各项规章制度,认真填写岗位记录。对误操作、不投运设备造成处理效果差或污染环境的,要纳入考核,污染严重的追究操作人员和管理人员的责任。
- 5.4 任何分厂、岗位不得擅自停运、拆除、闲置设备。除公司计划检修外,设备停运,由技术环保部批准,并说明停运原因、恢复时间及停运期间采取的污染预防的措施。
- 5.5 各分厂在设备检修过程中清理出来的废渣、边角废料等要按公司有关固体废弃物管理规定的要求,运到指定地点,避免污染环境。
- 5.6 设备检修期间,每天必须清理检修现场,按照公司相关规定进行处置, 不能乱堆乱放,达到文明施工的要求。
- 5.7 检修单位在施工过程中,如有污油、油漆等污染物泄漏于地面,应及时 采取措施处置,用砂或生料灰抹净。同时,把用后的砂或生料灰进行收集到原料 堆棚,不能乱堆乱放。
- 5.8 在检修中若发生意外情况可能造成环境污染时,分厂应及时报告生产领导采取必要的预防措施,避免造成环境事故。

第五章 环境监测管理制度

1、目的

为了准确掌握公司设备粉尘浓度排放情况,定期对污染物排放进行检测,确保粉尘达标排放,加强对设备的检测管理,保障环境不受污染,防止发生环境污染事故/事件,根据《环境保护法》等政策法规以及行业性法律法规的要求,制定本管理制度。

- 2、适用范围
- 2.1 本规定适用于华新水泥(阳新)有限公司生产各设备的检测管理。
- 2.2 环境监测管理是指公司内部日常检测和由上级环保部门进行监督检测和公司委托检测。
 - 3、职责
- 3.1技术环保部负责制定公司年度环境监测计划,经公司领导审批后送上级环保部门,临时性监测任务由技术环保部直接与上级环保部门联系监测,技术环保部对环境监测工作实施监督检查。
- 3.2 技术环保部负责环境检查的技术业务、设备配备和人员培训等管理工作,并负责监测数据的分析、上报、统计等工作。
- 3.3 技术环保部根据公司的环境监测计划,按照国家标准监测方法,组织公司内部日常环境监测工作,同时负责应急监测和污染事故的调查工作。
- 3.4技术环保部负责组织对监测质量、环境监测管理制度的执行情况以及环境监测人员的业务水平进行定期或不定期的检查考核。
- 3.5 技术环保部负责按环保法规的要求提出环境监测仪器的配备申请,并及时安排维修、更新。
 - 3.6 采购部负责监测仪器的采购工作。
- 3.7 质量控制部负责对公司内部采样进行化学分析,封存、报告、处置剩余的样品。
 - 4、监测范围
 - 4.1 噪音主要检测办公区、分厂值班室、生产区等范围。
 - 4.2 粉尘主要检测办公区、收尘器出口、包装环节、卸料环节等范围。

- 4.3 废水主要检测循环水、生活用水等范围。
- 5、一般规定
- 5.1分厂在生产设备停机过程中、检修、启机计划中,必须制定好污染临时排放方案,尽量减少排放。技术环保部职能人员实施监督检查。
 - 5.2 有关分厂配合监测采样工作。
- 5.3 技术环保部环境监测人员必须持证上岗制度,凡没有取得环境监测岗位培训合格证书的人员,不得单独上岗。已取得环境监测岗位培训合格证书的人员,要按要求定期进行复查考试,审证。
- 5.4技术环保部根据需要,制定并上报监测设备配置计划,对故障设备及时维修处理。
 - 5.5 技术环保部按照环境监测计划和任务进行定点、定周期监测。
- 5.6新建项目严格按照国家监测标准、技术规范和监测方法进行监测,由技术环保部委托上级环保部门验收,报主管领导批准后方可实施。
- 5.7 技术环保部建立预警制制度,凡出现监测数据超标的及时报告主管领导,由环保职能人员及时通知被测工序查找原因,采取必要的措施。
- 5.8公司在线监测数据当天早会通报,委托监测原始记录、台帐、报表等资料由技术环保部报告、存档,上级环保部门监督性检测数据由技术环保部负责交档案室存档。
- 5.9 质量控制部对来样进行分析,剩余水样和分析过程的残余物等,要收集 在专门的废物桶里,定期处理。
- 5.10 采样设备由技术环保部负责管理,取样点必须在安全区域,各设备内的采样点不得随意挪动。
 - 6、监测标准及要求
 - 6.1 在线监测及自行监测标准要求
- 6.1.1 在线监测设备的选型、量程设置、监测因子、污染物分析方法、设备的安装与调试、站房建设、设备日常运维与维护及在对比监测、等均应满足《固定污染源烟气(S02、N0x、颗粒物)排放连续监测技术规范(HJ75-2017)》及《固定污染源烟气(S02、N0x、颗粒物)排放连续监测系统技术要求及检测方法》(HJ76-2017)》标准要求。

- 6.1.2 水污染物在线监测设备的监测方法、运行与维护、验收等需满足《化学需氧量水质在线自动监测仪技术要求及检测方法 (HJ377-2019)》、《氨氮水质在线自动监测仪技术要求及检测方法 (HJ101-2019)》、《水污染源在线监测系统运行技术规范 (HJ355-2019)》、《水污染源在线监测系统验收标准 (2019)》等标准的要求。
- 6.1.3 环境空气质量在线监测(含PM2.5扬尘在线)及噪音实时监测设备的选型、设备运维、验收与备案、日常运行与维护应符合《环境空气质量标准(GB3095-2012)》、《环境空气颗粒物(PM10 和 PM2.5)连续自动监测系统运行和质控技术规范(HJ 817-2018)》、《功能区声环境质量自动监测技术规范(HJ906-2017)》、《声环境质量标准(GB3096-2008)》的要求,同时在线监测的安装位置需满足生态环境部门及现场监测条件的要求。
- 6.1.4 应按照《排污单位自行监测技术指南,水泥工业(HJ848-2017)》的要求,确定监测的因子及监测频次实施自行监测,并根据排污许可和环境影响评价报告中的要求,从严确定监测因子及监测频次,并制定自行监测计划。国家未颁布相关行业自行监测指南的,应按照《排污单位自行监测技术指南 总则(HJ819-2017)》的要求落实自行监测,并根据排污许可和环境影响评价报告中的要求,从严确定监测因子及监测频次。
- 6.2 在线监测设备的验收与备案。公司自动监测设备安装联网或者改造工作 完成后,应按照有关技术标准规范组织验收,验收有关资料交有管辖权的生态环 境部门备案,原则上在线监测设备安装联网或者改造3个月内,必须完成验收备 案。
- 6.3 在线监测故障的处理。在线监测设备因设备故障,出现监测数据异常时,相关负责人必须第一时间联系运维单位到场,对监测设备进行维护与校准,同步将监测故障书面报告给生态环境主管部门。其中,污染源自动监控设施发生故障不能正常使用的,主管部门应当在发生故障后12小时内向有管辖权的监督检查机构报告,并及时检修,保证在5个工作日内恢复正常运行。停运期间,应当按照有关规定和技术规范,采用手工监测等方式,对污染物排放状况进行监测,并报送监测数据。
 - 6.4 在线监测设备的更新。符合下列条件之一的,原则上应对在线监测设备

进行更新:

- 6.4.1 设备出厂设定量程不符合国家标准要求,无法进行修正,且地方生态 环境主管部门不予认可现有量程设定的;
 - 6.4.2 系统老化严重,设备量程漂移超出误差范围之内的;
 - 6.4.3 设备监测视数相对/绝对误差均超出标准范围的;
 - 6.4.4 设备不能反映工厂实际排放水平的;
 - 6.4.5 设备维修成本累计已超过设备原值的;
 - 6.4.6 生态环境部门执法检查时要求更换的;
 - 6.4.7 其他影响在线监测数据准确性或有效性的情形。

第六章 环境控制制度

本制度规定了环境监测控制的职责、管理内容和要求,其目的是对可能具有重大环境影响的运行与活动的关键特性进行例行监督和测量。

1 职责

环保部是环境监测控制的主管部门,负责环境绩效、主要运行控制的监测, 并不定期对公司的环境设施的运行效果及管理方案的实施情况与效果进行监测; 维修保全部为环境监测控制的配合部门,负责对环境设施运行维保实施控制。

2. 监控内容

监控的内容主要有; NOx、SO2、粉尘、噪声、废水等。

3. 具体监测内容(依据)

- 3.1公司运营是否符合国家环保有关法律法规;
- 3.2 除尘设施是否同步运行;
- 3.3 目测除尘器排放浓度是否超标;
- 3.4 检查设备运行是否平稳;
- 3.5 环境保护税是否依法缴纳;

4. 异常情况处理程序

发现异常情况,岗位人员应及时报告值班长,值班长应及时组织处理。如果一时处理不了,则及时向公司环保主管部门汇报,公司环保主管部门根据实际情况组织处理,设备部积极配合。如遇到复杂问题则向生产、设备副总汇报。对于条件所限,解决不了时,相关主管领导向公司汇报及当地环保部门汇报。

5、责任划分

- 5.1 发生一次外部投诉,处罚现场(岗位)作业人员;
- 5.2 当班能处理的, 值班长未及时组织处理则处罚值班长;
- 5.3 复杂情况,生产部、维修保全部应及时组织维修,因维修不及时或维修不到位则处罚维修保全部:

6、要求

6.1 矿山分厂、熟料分厂、水泥分厂、维修保全部要加强除尘设施、消声设施、水处理系统运行维护管理工作,确保 NOx、SO2、粉尘排放、噪声排放、水排放

等重要环境处于受控状态;确保除尘设施同步运行率100%;

- 6.2 维修保全部要加强除尘设施、消声设施、水处理系统检修管理工作,确保设备完好率 100%;
- 6.3 采购部、发运部加强客户运输车辆管理,发现问题(车辆抛洒、鸣喇叭)及时协调,并将协调结果在调度会上通报。
- 6.4 行管部、矿山分厂要加强厂区及矿山区域道路扬尘控制,路面需及时进行清扫并洒水降尘,杜绝运输车辆经过产生明显扬尘。

第七章 环保投诉事件处理及通报制度

1、目的

为有效处理公司环保投诉事件,做好环保投诉处置工作,特制订本制度。

- 2、投诉事件的认定
- 2.1周边居民、社区等向工厂投诉环保存在的问题或工厂排放、事故影响了周围居民生活等:
- 2.2 环保部门转发给工厂的环保投诉、限期整改通知,以及转发其它组织的投诉、询问等;
- 2.3 第三方组织、非政府组织向工厂提出的投诉,有关环保问题的询问等;
- 2.4 社交媒体、网站等发现的针对工厂的环保投诉、疑问等。
- 3、环保投诉汇报程序(处置流程及时间期限) 所有投诉作为重大事件在当天逐级上报,非工作时间用电话形式进行汇报,

汇报顺序为

流程	报告人	报告到	报告方式	时间要求	报告要点	备注
1	接到投	工厂环保管理人员	由迁	收到投诉	投诉情况的客	口头
	诉人		电话	1 小时内	观描述	通报
		1 工厂环况名表人			1、投诉情况的	
	工厂环 1、工厂环保负责人 工厂环 2、工厂行政管理部		收到投诉	客观描述		
2	保管理	3、工厂厂长	邮件	2 小时内	2、收到投诉的	邮件
	人员	3、			相关邮 件、文	
		4、仓即11贝贝八			件、资料等	

4、汇报要点

- 4.1 客观汇报发生事件;
- 4.2 到现场了解情况,准确、简洁、无倾向性事件描述;
- 4.3事件分析:参与人员、投诉层次、后果影响、解决难度、可能解决途径。

- 5、制度行动计划并立即执行
- 5.1 首先要防止事件扩大,尽可能控制在小范围内,使事件可控;
- 5.2 当天或第二天尽可能地接触到投诉人进行沟通,了解事态真相,及投诉人真实的思想;无法联系到投诉人或无法见面时另行作出行动计划;
- 5.3 不全盘否定投诉人提出的问题或产生对抗,工厂内存在的问题可以承诺整改,对于投诉人提出的除此之外的其它要求不予以承诺,所有问题解决都要在政府框架内协调;
- 5.4 依靠当地政府, 村委会等机构进行协调;
- 5.5 对全局掌握后编制环保整改行动计划:
- 5.6 工厂针对投诉真实部分进行整改行动计划和时间表;
- 5.7 所有外报资料经工厂厂长及行政管理部确认后方可报送;
- 5.8 投诉事件处理或整改完成后定期进行跟踪走访,掌握投诉人对事件处理结果的满意度,避免投诉重复发生。
- 6、环保投诉事件处理结束后由环保部形成处理报告提交行政管理部向工厂各部 门下发。

第八章 环境保护培训教育管理制度

1、目的

为了加强对公司员工环境保护知识的培训和教育,提高全体员工对环保工作的认识,使全体员工自觉爱护环境,掌握设备的控制参数和操作规程,提高设备运转率,保障环境不受污染,制定本管理制度。

- 2、适用范围
- 2.1 本规定适用于华新水泥(阳新)有限公司环境保护培训教育管理。
- 2.2环境保护教育培训管理是指公司内部组织培训和外部委派专业培训。
- 3、职责
- 3.1 行政管理部制定对员工的环境保护教育培训工作计划。
- 3.2 技术环保部负责环境保护教育培训工作的实施。
- 3.3 环境保护教育培训的形式主要有:公司内部的环保教育培训、委派特殊环保教育培训。
 - 4、一般规定
- 4.1 公司日常的环保教育培训:对在职全体员工每年进行一次环保教育培训。
- 4.2 由行政管理部每年委派主管环保工作的人员进行外部专业培训一次,考取相应的资格等级证书。
- 4.3 兼职环保管理人员也应自学环保知识,熟知国家有关环保的各项法规、 政策、方案,运用到日常的工作中。
- 4.4 加强员工的环保知识和法制观念,使环保工作深入到日常工作中,也使 环保成为员工的自觉行为。

第九章 环境税缴纳与环保资金申请管理制度

1、目的

为了及时缴纳环境税,掌握国家环保法律、法规、政策,明确环境税缴纳及 环保专项资金申请的流程和责任,加大对公司设备的投入力度,改善生产环境, 制定本管理制度。

- 2、适用范围
- 2.1 本规定适用于华新水泥(阳新)有限公司环境税缴纳与环保资金申请管理。
 - 3、一般规定
- 3.1 环境税原则上是按月计算,按季度缴纳,环境税的计算按国家标准执行。 技术环保部根据公司的实际排污情况认真核算每种污染物的排放浓度与排放量, 在核定实际排污量后,财务部应在每季度首月 15 日前到地方税务部门申报缴纳 环境税。
- 3.2环境税属于专项资金,必须以转帐的形式交指定的收款部门和账户,不得以现金支付。
 - 3.3 财务部建立环境税统计台帐。
- 3.4 在开展清洁生产审核、资源综合利用、设备技术改造与增设、节约资源能源、减少环境污染的高新技术应用等项目均可申请环境保护资金。
 - 3.5 申请环境保护资金所需技术资料,由技术环保部提供。
- 3.6申请到的环境保护资金专款专用,必须用于所申请的项目建设上,不得 挪作其他用途,财务部负责配套资金的落实,并统一管理与监督。
- 3.7项目建成后,财务部要接受环保管理部门对环境保护资金使用情况的监督检查。
 - 3.8 财务部建立环境保护资金的统计台帐。

第十章 环保监督与考核管理细则

1、目的

为了更好的落实好公司环境治理,实现达标排放,切实降低粉尘排放,减少水污染,降低噪音,充分发挥各环保设施的作用和环保管理人员的职责,保护和改善公司区域环境质量,保障身体健康,促进生产与环保协调发展,为公司创造更为广阔的生存发展空间,制定本考核细则。

2、适用范围

本规定适用华新水泥(阳新)有限公司环保监督与考核管理。

- 3、职责
- 3.1 环保职能人员经常去生产现场检查。
- 3.2 各分厂管理人员要加强设备的日常巡检与检查,确保完好率与运行率。
- 3.3 岗位操作工要按时定点进行巡检,现场观察设备运行情况,确保设备完好运行。
 - 4、一般规定
 - 4.1 各岗位人员考核细则
- 4.1.1 生产线各岗位人员未按规定时间巡检环保设备一次扣 100 元,发现排放异常应立即通知相关领导,除尘设备排放口排放异常未发现或发现未及时报告一次扣 200 元。
- 4.1.2 中控操作员应关注主要排放口在线监测排放数据,发现排放异常或超标应立即汇报环保负责人,未及时联系处理或调整导致排放超标(扣除开停窑等非正常工况)月度累计 2 小时扣罚 200 元/次,超标 3 小时及以上扣罚 500 元/次,导致日均值超标扣罚当班值班长、操作员各 1000 元/次,并取消该分厂/部门年度环保管理先进个人评先资格,如造成外部处罚及调查等不良后果由公司组织处理。
- 4.1.3 环保工程师应及时响应对在线监测数据异常的检查及维护,应及时与运维商取得联系,如因处理环保设备维护不及时,导致在线监测检测数据出现超标(扣除开停窑等非正常工况)超标3小时及以上扣罚500元/次,导致日均值

超标扣罚 2000 元/次, 并取消部门年度环保管理先进个人评先资格, 如造成外部处罚及调查等不良后果由公司组织处理。如因运维质量问题导致监测设备故障出现超标按照运维合同进行对应处罚。

- 4.1.4 按时真实的做好环保收尘设施的运行记录,未按时填写记录一次,扣100元,记录弄虚作假,不真实一次扣罚200元。
- 4.1.5 各岗位人员对所属环节设备的跑、冒、滴、漏现象能处理的要及时予以处理,不能处理的要及时报告相关部门,可采取微信群或电话、口头等方式,能处理而未处理或未及时上报的,视情节严重扣罚 50-200 元/次,。
 - 4.1.6 岗位人员发现问题后,维修人员不及时处理扣罚 100-400 元/次。
- 4.1.7 操作工如因工作责任心不强而导致人为环保设备损坏者,扣罚 100—500 元/次。
- 4.1.8 对任意发生无组织排放,处罚相关部门负责人 500 元/次,情节严重导致公司生产受到当地政府限制扣罚相关管理人员 2000-3000 元/次,如产生重大影响的由公司组织处理。
- 4.1.9 厂区、矿山路面因清扫不及时或未及时采取有效措施洒水降尘,导致车辆经过产生明显扬尘、路面泥水污染的扣罚行管部或矿山分厂相关管理人员200元/次,如因此导致公司生产受到当地政府限制扣罚相关管理人员500-1000元/次,如产生重大影响的由公司组织处理。
 - 4.2 各分厂考核细则
 - 分厂管理人员违反以下内容者,由环保经理按以下制度对责任人进行处罚。
- 4.2.1 没有经过审批随意关停设备,每次对该班值班长罚款 100-500 元,对造成环境污染事故,由相关部门按公司有关规定处理。
- 4.2.2 设备更换的润滑油时必须回收,按照危废管理有关规定进行处理;油更换过程中防止抛洒、滴漏,设备更换或加入润滑油结束后,应将地面残油处理干净,否则对该检修人员处罚 50-200 元/次。
 - 4.2.3 同一问题连续两次被发现,从第三次开始,加倍处罚。
 - 4.3 各部门考核细则

部门管理人员违反以下内容者,由环境管理委员会按以下制度对相应责任人 进行处罚。

- 4.3.1 技术环保部不按期组织内部污染物检测,对分管环保经理处罚 500 元/次。
- 4.3.2 环保排放污染物不按规定时间进行分析上报数据,每拖延一天,对分管环保经理处罚200元/次。
- 4.3.3 环保设备备品备件未按规定时间进购到位,每拖延一天,对采购经理处罚 100 元/次。
- 4.3.4 行政管理部不制定对员工的环境保护教育培训工作计划,对人力资源经理处罚 200 元/次,不按规定委派外部培训环保专业人员,对人力资源经理处罚 200 元/次。
- 4.3.5 技术环保部不按规定组织全公司环保培训,对环保部经理处罚 200 元/次。
- 4.3.6 技术环保部不及时填报污染物排放表,对分管环保经理处罚 200 元/次。
- 4.3.7 财务部不按规定按期缴纳环境税,对财务部经理处罚 200 元/次,不建立环保账目,对财务部经理处罚 200 元/次。
- 4.3.8 发生一般性外部投诉而内部未发现及处理,处罚直接责任人 500 元/次,造成严重后果的,由公司组织处理:
 - 4.3.9 同一问题连续两次被发现,从第三次开始,加倍处罚。
 - 4.4 个人奖励
 - 4.4.1 对及时发现无组织排放的员工给予奖励 50—100 元/次。
- 4.4.2 能及时发现环保事故隐患,并避免事故发生者,给予表扬,并奖励 100 —300 元/次。
- 4.4.3 对公司环保提出有价值性意见并被公司采纳实行的员工予以 500—1000 元的奖励。
- 4.4.4 环保做出特殊贡献的优先考虑年度公司环保管理先进个人申报,具体奖励金额按公司相关要求执行。
 - 4.5 环保管理考核机构和程序
- 4.5.1 环境保护管理委员会为环保考核的最高权力机构,对全公司的环保管理工作进行考核;

- 4.5.2 环境保护管理委员会为公司环保工作的管理机构,对公司各环节、各部门、各分厂的环保工作监督考核,有权进行环保考核处罚及奖励;
- 4.5.3 技术环保部为环保管理工作的主要部门,对各分厂、部门的环保工作 监督考核,有权对分厂管理人员和岗位人员进行环保考核,有权进行环保考核处 罚及奖励;
- 4.5.4各分厂、部门对本部门的环保管理工作负责,有权对本班各岗位人员进行环保考核;
 - 5、监督与检查
- 5.1 本制度由环境保护管理委员会总体监督检查。由技术环保部负责对设备设施情况进行检查监督。
- 5.2 技术环保部有权对不落实本责任制度的分厂(部门)或个人进行处罚或奖励。

华新水泥(阳新)有限公司 2022年度自行监测方案

四、监测方案

监测点位	污染物名称	执行标准	许可排放限值	监测方式	监测频次	监测方法	采样分析仪器	检出限	
	pH值		6~9	手工	1次/半年	水质 pH 值的测定 玻璃电 极法 GB6920-1986	pH 计 FE-20 型	0.01pH (无量纲)	
	悬浮物		400mg/L	手工	1次/半年	水质 悬浮物的测定 重量法 GB 11901-1989	梅特勒-托利多分析天平 ME204	4mg/L	
	五日生化需		300mg/L	手工	1次/半年	水质 五日生化需氧量 (BOD ₅)的测定 稀释与接 种法HJ505-2009	溶解氧测定仪JPSJ-605 生物培养箱 LRH-250	0.5 mg/L	
生活污水	化学需氧量	污水综合排 放标准 GB8978- 1996	500mg/L	手工	1次/半年	水质 化学需氧量的测定 重铬酸盐法 HJ 828-2017	50.00mL 滴定管	4mg/L	
总排口(★ 1#)	氨氮		/	手工	1次/半年	水质 氨氮的测定 纳氏试 剂分光光度法 HJ 535-2009	紫外可见分光光度计 L6	0.025mg/L	
	总磷		/	手工	1次/半年	水质 总磷的测定 钼酸铵 分光光度法 GB 11893-89	紫外可见分光光度计L6	0.01mg/L	
	石油类			20mg/L	手工	1次/半年	水质 石油类和动植物油的 测定 红外光度法 HJ 637-2012	红外光度测油仪 F2000-IK 型	0.04mg/L
	氟化物		20mg/L	手工	1次/半年	水质 氟化物的测定 离子 选择电极法 GB7484-1987	离子计 PXSJ-216(AIT-JC-008)	0.05 mg/L	

监测点位	污染物 名称	执行标准	许可排放 限值	监测方式	监测 频次	监测方法	采样分析仪器	检出限
有组织废气排 放口DA002(锤 式破碎机)(◎ 1#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/季	固定污染源排气中颗粒物测定 与气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-JC-0 23)	1.0mg/m ³
有组织废气排 放口DA003(破 碎机)(◎2#)	颗粒物	水泥工业大气污染 物排放标准 GB4915-2013	10mg/m ³	手工	1次/季	固定污染源排气中颗粒物测定 与气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-JC-0 23)	1. Omg/m³
有组织废气排 放口DA004(输 送皮带)(◎3#)	颗粒物	水泥工业大气污染 物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定 与气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-JC-0 23)	$1.0 \mathrm{mg/m}^3$
有组织废气排 放口DA005 (输 送皮带)(◎4#)	颗粒物	水泥工业大气污染 物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定 与气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-JC-0 23)	$1.0 \mathrm{mg/m}^3$
有组织废气排 放口DA006(输 送皮带)(◎5#)	颗粒物	水泥工业大气污染 物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定 与气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-JC-0 23)	$1.\mathrm{Omg/m}^3$
有组织废气排 放口DA007(输 送皮带)	颗粒物	水泥工业大气污染 物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定 与气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-JC-0 23)	1. Omg/m³
有组织废气排 放口DA008(输 送皮带)(◎6#)	颗粒物	水泥工业大气污染 物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定 与气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-JC-0 23)	1. Omg/m³

监测点位	污染物名 称	执行标准	许可排放 限值	监测方式	监测 频次	监测方法	采样分析仪器	检出限
有组织废气排放 □DA009(输送皮 带)(◎7#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物测定与气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1. Omg/m³
有组织废气排放 □DA010(斗堤) (◎8#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物 测定与气态污染物采样方 法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排放 □DA011(斗堤) (◎9#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物 测定与气态污染物采样方 法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排放 □DA012(斗堤) (◎10#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物 测定与气态污染物采样方 法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排放 □DA013(斗堤输 送)(◎11#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物 测定与气态污染物采样方 法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排放 □DA014(斗堤) (◎12#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物测定与气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排放 □DA015(斗堤) (◎13#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物测定与气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³

监测点位	污染物 名称	执行标准	许可排放 限值	监测方式	监测 频次	监测方法	采样分析仪器	检出限
有组织废气排 放口DA016 (斗 堤) (◎14#)	颗粒物	水泥工业大气污染 物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口DA017(斗 堤) (◎15#)	颗粒物	水泥工业大气污染 物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口DA018(水 泥库) (◎16#)	颗粒物	水泥工业大气污染 物排放标准 GB4915-2013	10mg/m ³	手工	1次/两 年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口DA019(水 泥库) (◎17#)	颗粒物	水泥工业大气污染 物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口DA020(水 泥库) (◎18#)	颗粒物	水泥工业大气污染 物排放标准 GB4915-2013	10mg/m ³	手工	1次/两 年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA021(水 泥库) (◎19#)	颗粒物	水泥工业大气污染 物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³

监测点位	污染物 名称	执行标准	许可排放 限值	监测方式	监测 频次	监测方法	采样分析仪器	检出限
有组织废气排 放口 DA022 (水 泥库) (◎20#)	颗粒物	水泥工业大气污染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两 年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA023(水 泥库) (◎21#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA024(水 泥库) (◎22#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA025(水 泥库) (◎23#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA026 (水 泥库) (◎24#)	颗粒物	水泥工业大气污染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两 年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA027 (水 泥库)(◎25#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³

监测点位	污染物 名称	执行标准	许可排放 限值	监测方式	监测 频次	监测方法	采样分析仪器	检出限
有组织废气排 放口 DA030(水 泥磨 1#) (◎26#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	自动	1次/小	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA031(水 泥磨 2#) (◎27#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	自动	1次/小	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA032 (水 泥磨 3#)(◎ 28#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	自动	1次/小	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA033(水 泥磨 4#)(◎ 29#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	自动	1次/小	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA034(包 装机)(◎30#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/季	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA035(包 装机)(◎31#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/季	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³

监测点位	污染物名称	执行标准	许可排放 限值	监测方 式	监测 频次	监测方法	采样分析仪器	检出限
有组织废气排 放口 DA036(包 装机)(◎32#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/季	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA037(包 装机)(◎33#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/季	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA038(包 装机)(◎34#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/季	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA039(包 装机)(◎35#)	颗粒物	水泥工业大气污染物排放标准 GB4915-2013	10mg/m ³	手工	1次/季	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA040(散 装机)(◎36#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA041 (散 装机)(◎37#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA042(散 装机)(◎38#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³

监测点位	污染物名称	执行标准	许可排放 限值	监测方 式	监测 频次	监测方法	采样分析仪器	检出限
有组织废气排 放口 DA043(散 装机)(◎39#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA044(散 装机)(◎40#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两 年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA045(散 装机)(◎41#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA046(散 装机)(◎42#)	颗粒物	水泥工业大气污染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA047(散 装机)(◎43#)	颗粒物	水泥工业大气污染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA048(散 装机)(◎44#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA049(散 装机)(◎45#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³

监测点位	污染物名 称	执行标准	许可排放 限值	监测方 式	监测 频次	监测方法	采样分析仪器	检出限
有组织废气排放		水泥工业大气污			1次/两	固定污染源排气中颗粒物测定与	电子天平	
口 DA050 (装车机	颗粒物	染物排放标准	10mg/m^3	手工	年	气态污染物采样方法	AUW220D(ATI-J	1.0mg/m^3
(输送))(◎46#)		GB4915-2013			+	GB/T 16157-1996	C-023)	
有组织废气排放		水泥工业大气污			1次/两	固定污染源排气中颗粒物测定与	电子天平	
口 DA051 (装车机	颗粒物	染物排放标准	10mg/m^3	手工	年	气态污染物采样方法	AUW220D(ATI-J	1.0mg/m^3
(输送))(◎47#)		GB4915-2013			+	GB/T 16157-1996	C-023)	
有组织废气排放		水泥工业大气污			1次/两	固定污染源排气中颗粒物测定与	电子天平	
口 DA052 (装车机	颗粒物	染物排放标准	10mg/m^3	手工	年	气态污染物采样方法	AUW220D(ATI-J	1.0mg/m^3
(输送)(◎48#)		GB4915-2013			+	GB/T 16157-1996	C-023)	
有组织废气排放		水泥工业大气污			1次/两	固定污染源排气中颗粒物测定与	电子天平	
口 DA053 (装车输	颗粒物	染物排放标准	10mg/m^3	手工	年	气态污染物采样方法	AUW220D(ATI-J	1.0mg/m^3
送)(◎49#)		GB4915-2013			+	GB/T 16157-1996	C-023)	
有组织废气排放		水泥工业大气污			1次/两	固定污染源排气中颗粒物测定与	电子天平	
口 DA054 (输送皮	颗粒物	染物排放标准	10mg/m^3	手工	年	气态污染物采样方法	AUW220D(ATI-J	1.0mg/m^3
帶)(◎50#)		GB4915-2013			+	GB/T 16157-1996	C-023)	
有组织废气排放		水泥工业大气污			1次/两	固定污染源排气中颗粒物测定与	电子天平	
口 DA055 (输送皮	颗粒物	染物排放标准	10mg/m^3	手工	年	气态污染物采样方法	AUW220D(ATI-J	1.0mg/m^3
带 (◎51#)		GB4915-2013			+	GB/T 16157-1996	C-023)	

监测点位	污染物名称	执行标准	许可排放 限值	监测方 式	监测 频次	监测方法	采样分析仪器	检出限
有组织废气排 放口 DA056 (输 送皮带)(◎ 52#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA057(斗 堤)(◎53#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA058 (输 送皮带)(◎ 54#)	颗粒物	水泥工业大气污染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两 年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA059(输 送皮带)(◎ 55#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA060 (输 送皮带) (◎ 56#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA061 (输 送皮带)(◎ 57#)	颗粒物	水泥工业大气污染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两 年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³

监测点位	污染物名称	执行标准	许可排放 限值	监测方 式	监测 频次	监测方法	采样分析仪器	检出限
有组织废气排 放口 DA062 (输 送皮带)(◎ 58#)	颗粒物	水泥工业大气污染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA063(输 送皮带)(◎ 59#)	颗粒物	水泥工业大气污染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA064 (输 送皮带)(◎ 60#)	颗粒物	水泥工业大气污染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m3
有组织废气排 放口 DA065 (输 送皮带)(◎ 61#)	颗粒物	水泥工业大气污染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m3
有组织废气排 放口 DA067 (熟 料库)(◎62#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m3
有组织废气排 放口 DA068 (熟 料库)(◎63#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	10mg/m ³	手工	1次/两年	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m3

监测点位	污染物 名称	执行标准	许可排放 限值	监测 方式	监测 频次	监测方法	采样分析仪器	检出限
有组织废气排放		水泥工业大气污染物				固定污染源排气中颗粒物测定	电子天平	
口DA069(熟料库)	颗粒物	排放标准	10mg/m^3	手工	1次/两年	与气态污染物采样方法	AUW220D(ATI-J	1.0mg/m^3
(◎64#)		GB4915-2013				GB/T 16157-1996	C-023)	
有组织废气排放		水泥工业大气污染物				固定污染源排气中颗粒物测定	电子天平	
口DA070(熟料库)	颗粒物	排放标准	10mg/m^3	手工	1次/两年	与气态污染物采样方法	AUW220D(ATI-J	1.0mg/m^3
(©65#)		GB4915-2013				GB/T 16157-1996	C-023)	
有组织废气排放		水泥工业大气污染物				固定污染源排气中颗粒物测定	电子天平	
口DA071(生料库)	颗粒物	排放标准	10mg/m^3	手工	1次/两年	与气态污染物采样方法	AUW220D(ATI-J	1.0mg/m^3
(©66#)		GB4915-2013				GB/T 16157-1996	C-023)	
有组织废气排放		水泥工业大气污染物				固定污染源排气中颗粒物测定	电子天平	
口DA072(生料库)	颗粒物	排放标准	10mg/m^3	手工	1次/两年	与气态污染物采样方法	AUW220D(ATI-J	1.0mg/m^3
(©67#)		GB4915-2013				GB/T 16157-1996	C-023)	
有组织废气排放		水泥工业大气污染物				固定污染源排气中颗粒物测定	电子天平	
口DA073(生料库)	颗粒物	排放标准	10mg/m^3	手工	1次/两年	与气态污染物采样方法	AUW220D(ATI-J	1.0mg/m^3
(◎68#)		GB4915-2013				GB/T 16157-1996	C-023)	
有组织废气排放		水泥工业大气污染物				固定污染源排气中颗粒物测定	电子天平	
口DA074(生料库)	颗粒物	排放标准	10mg/m^3	手工	1次/两年	与气态污染物采样方法	AUW220D(ATI-J	1.0mg/m^3
(◎69#)		GB4915-2013				GB/T 16157-1996	C-023)	
有组织废气排放		水泥工业大气污染物				固定污染源排气中颗粒物测定	电子天平	
口DA075(冷却机)	颗粒物	排放标准	20mg/m^3	自动	1次/小时	与气态污染物采样方法	AUW220D(ATI-J	1.0mg/m^3
(◎70#)		GB4915-2013				GB/T 16157-1996	C-023)	
有组织废气排放		水泥工业大气污染物				固定污染源排气中颗粒物测定	电子天平	
口 DA076(冷却机)	颗粒物	排放标准	20mg/m^3	自动	1次/小时	与气态污染物采样方法	AUW220D(ATI-J	1.0mg/m^3
(©71#)		GB4915-2013				GB/T 16157-1996	C-023)	

监测点位	污染物名称	执行标准	许可排放 限值	监测方 式	监测 频次	监测方法	采样分析仪器	检出限
有组织废气排 放口 DA077 (球 磨机)(◎72#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	20mg/m ³	自动	1次/小	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
有组织废气排 放口 DA078 (球 磨机)(◎73#)	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	20mg/m ³	自动	1次/小	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	电子天平 AUW220D(ATI-J C-023)	1.0mg/m ³
	颗粒物	水泥工业大气污 染物排放标准 GB4915-2013	20mg/m ³	自动	1次/小	固定污染源排气中颗粒物测定与 气态污染物采样方法 GB/T 16157-1996	SCS-900	/
	汞及其化合 物	水泥工业大气污 染物排放标准 GB4915-2013	0.05mg/m	手工	1次/季	固定污染源废气 汞的测定冷原子吸收分光光度法 (暂行) (HJ 543— 2009)	冷原子吸收测汞 仪 F732-VJ	0.0042mg/ m ³
有组织废气排 放口 DA079(水 泥窑协同处置	氨	水泥工业大气污 染物排放标准 GB4915-2013	8mg/m ³	手工	1次/季	空气和废气 氨的测定 纳氏试剂分光光 度法 HJ 533-2009	紫外可见分光光 度计 L6	0.25 mg/m ³
窑尾废气)(◎ 74#)	氯化氢	水泥窑协同处置 一 固体废物污染控 制标准	10mg/m ³	手工	1次/半	环境空气和废气 氯化氢的测定 离子色谱法 HJ 549-2016 代替 HJ549-2009	离子色谱仪	0.2 mg/m ³ /0.02 mg/m ³
	铍							0.004 μ g/m3
	铬		0.5mg/m^3	手工	1次/半年	电感耦合等离子体发射光谱法 HJ777-2015	电感耦合等离子 体发射光谱仪	0.004 μ g/m3
	锡							0.01 μ g/m3

监测点位	污染物名称	执行标准	许可排放限值	监测方式	监测频次	监测方法	采样分析仪器	检出限
	锑							$0.003 \ \mu \ g/m^3$
	铜					北京拥入林京才从 4	よ は 細 人 数 京 フ	0.005 μ g/m3
	钴		$0.5 \mathrm{mg/m}^3$	手工	1次/半年	电感耦合等离子体发射光谱法 HJ777-2015	电感耦合等离子 体发射光谱仪	0.005 μ g/m3
	锰					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.001 µ g/m3
	镍							0.003 µ g/m3
	钒及其化		O F/ ³	手工	1次/业左	电感耦合等离子体发	电感耦合等离子	0.002 11.0/m2
	合物	 水泥窑协同处置	0.5mg/m ³	十上	1次/半年	射光谱法 HJ777-2015	体发射光谱仪	0.002 μ g/m3
有组织废气排	铊	固体废物污染控	1. Omg/m ³	手工	1次/半年			0.008 μ g/m3
放口 DA079(水	镉	制标准	1. Omg/m ³	手工	1次/半年		电感耦合等离子 体发射光谱仪	0.008 μ g/m3
泥窑协同处置 窑尾废气)(◎	铅	GB30485-2013	1.0mg/m^3	手工	1次/半年	电感耦合等离子体发射 光谱法 HJ657-2013		0.2 μ g/m3
74#)	砷及其		$1.0 \mathrm{mg/m^3}$	手工	1次/半年	70.71.21.2000 2010		0.2 μ g/m3
	化合物		1. Ollig/ III	十	17人/十十			0.2 μ g/III3
	氟化氢		$1\mathrm{mg/m^3}$	手工	1次/半年	固定污染源废气 氟化氢的测定 离子色谱法(暂 行) HJ 688-2013	离子色谱仪	0.03mg/m3/0. 32 mg/m3
	氮氧化物	水泥工业大气污 染物排放标准 GB4915-2013	$320 \mathrm{mg/m}^3$	手工	1次/小时	固定污染源废气 氮氧 化物的测定 定电位电 解法 HJ693-2014	SCS-900	/

监测点位	污染物名称	执行标准	许可排放 限值	监测方式	监测 频次	监测方法	采样分析仪器	检出限
有组织废 气排放口	总有机 碳	水泥窑协同处置 固体废物污染控 制标准 GB30485-2013	10 mg/m³	手工	1次/半年	固定污染源废气总烃、甲烷和非甲烷总烃的测定气相色谱法 HJ38-2017	气相色谱仪	0.06 mg/m 3
DA079 (水 泥窑协同 处置窑尾	二氧化硫	水泥工业大气污 染物排放标准 GB4915-2013	$100 \mathrm{mg/m}^3$	手工	1次/小	固定污染源排气中二氧化硫 的测定定电位电解法 HJ 57-2017	SCS-900	/
废气)(◎ 74#)	二噁英	水泥窑协同处置 固体废物污染控 制标准 GB30485-2013	0. 1ng-TE Q/m³	手工	1次/年	环境空气和废气 二噁英类的测定 同位素稀释高分辨 气相色谱一高分辨质谱法 HJ 77.2-2008	气相色谱-质谱仪	1 pg/m ³
	铍							0.004 µ g/m3
有组织废	铬							0.004 μ g/m3
气排放口	锡							0.01 μ g/m3
DA080 (水	锑	水泥窑协同处置			1次/半	电感耦合等离子体发射光谱	北京祖人 校立之 (北)	0.003 μ g/m3
泥窑协同	铜	固体废物污染控	0.5mg/m^3	手工	年	电恐柄百等离了体及别几届 法 HJ777-2015	电感耦合等离子体发 射光谱仪	0.005 μ g/m3
处置窑尾	钴	钴制标准			7	12 HJ 11 2010	7473.HV	0.005 µ g/m3
废气)(◎	锰	GB30485-2013						0.001 µ g/m3
75#)	镍							0.003 µ g/m3
	钒及其化合物							0.002 µ g/m3

监测点位	污染物名称	执行标准	许可排放 限值	监测方 式	监测 频次	监测方法	采样分析仪器	检出限
	氮氧化物	水泥工业大气污染物 排放标准 GB4915-2013	$320 \mathrm{mg/m}^3$	手工	1次/小	固定污染源废气 氮氧化物的测定 定电位电解法 HJ693-2014	SCS-900	/
	二氧化硫		$100 \mathrm{mg/m}^3$	手工	1次/小	固定污染源废气 氮氧化物的测定 定电位电解法 HJ693-2014	SCS-900	/
有组织废气排放口	二噁英		0.1ng-TEQ/m³	手工	1次/年	环境空气和废气 二噁英类的测定 同位素稀释高分辨 气相色谱一高分辨质谱法 HJ 77.2—2008	气相色谱-质谱仪	1 pg/m ³
DA080 (水 泥窑协同 处置窑尾	氯化氢	水泥窑协同处置 固体废物污染控制标准 GB30485-2013	$10 \mathrm{mg/m}^3$	手工	1次/半	环境空气和废气 氯化氢的测定 离子色谱法 HJ 549-2016 代替 HJ 549-2009	离子色谱仪	0.2 mg/m ³ /0.02 mg/m ³
废气)(◎ 75#)	总有机碳		10 mg/m³	手工	1次/半年	固定污染源废气总烃、甲烷和非甲烷总烃的测定气相色谱法 HJ38-2017	气相色谱仪	0.06mg/m3
	颗粒物	水泥工业大气污染物 排放标准 GB4915-2013	$10 \mathrm{mg/m}^3$	自动	1次/小	固定污染源排气中颗粒物 测定与气态污染物采样 方法 GB/T16157-1996	SCS-900	/
	铊	水泥窑协同处置 固体废物污染控制标准 GB30485-2013	1.Omg/m³	手工	1次/半	电感耦合等离子体发射光谱 法 HJ657-2013	电感耦合等离子体发射 光谱仪	0.008 μ g/m3

监测点位	污染物名称	执行标准	许可排放 限值	监测方 式	监测 频次	监测方法	采样分析仪器	检出限
	镉		1. Omg/m ³	手工	1次/半 年	电感耦合等离子体发射光谱 法 HJ657-2013	电感耦合等离子体发射 光谱仪	0.008 μ g/m3
有组织废	铅	· 水泥窑协同处置 固体废物污染控制标准 GB30485-2013	1.0mg/m^3	手工	1次/半 年	电感耦合等离子体发射光谱 法 HJ657-2013	电感耦合等离子体发射 光谱仪	0.2 μ g/m3
	砷及其化合 物		1.0mg/m^3	手工	1次/半 年	电感耦合等离子体发射光谱 法 HJ657-2013	电感耦合等离子体发射 光谱仪	0.2 µ g/m3
气排放口 DA080(水 泥窑协同 处置窑尾	氟化氢		$1\mathrm{mg/m^3}$	手工	1次/半年	固定污染源废气 氟化氢的测定 离子色谱法(暂 行)HJ 688-2013	离子色谱仪	0.03mg/m3/ 0.32 mg/m3
废气)(◎ 75#)	氨	水泥工业大气污染物 排放标准 GB4915-2013	$8 \mathrm{mg/m}^3$	手工	1次/季	空气和废气 氨的测定 纳氏试剂分光光度法 HJ 533-2009	紫外可见分光光度计 L6	0.25 mg/m3
	汞及其化合 物	水泥工业大气污染物 排放标准 GB4915-2013	0.05mg/m ³	手工	1次/季	固定污染源废气 汞的测定 冷原子吸收分光 光度法 (暂行)(HJ 543—2009)	冷原子吸收测汞仪 F732-VJ	0.0042mg/ m ³
有组织废 气排放口 DA081(输 送单元) (◎76#)	颗粒物	水泥工业大气污染物 排放标准 GB4915-2013	10mg/m ³	手工	1次/年	《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157-1996)	电子天平	1.0mg/m ³

监测点位	污染物名称	执行标准	许可排放 限值	监测方 式	监测 频次	监测方法	采样分析仪器	检出限
有组织废 气排放口 DA082(泊 位生产单 元)(◎ 77#)	颗粒物	水泥工业大气污染 物排放标准 GB4915-2013	10mg/m ³	手工	1次/年	固定污染源排气中颗粒物 测定与气态污染物采样 方法 GB/T16157-199	电子天平 AUW220D(ATI-JC-023)	1.0mg/m ³
装船作业 无组织排 放	颗粒物	大气污染物综合 排放标准 GB16297-1996	1mg/m ³	手工	1次/半	《环境空气 总悬浮颗粒物的 测定 重量法 GB/T 15432-1995	电子天平 AUW220D(ATI-JC-023)	1.0mg/m ³
	臭气浓度	恶臭污染物排放标 准 GB 14554-93	60	手工	1次/季	空气质量 恶臭的测定 三点比较式臭袋 法 GB T 14675-1993	/	10(无量纲)
厂界	氨	水泥工业大气污染 物排放标准 GB4915-2013	1. Omg/m³	手工	1次/季	空气和废气 氨的测定 纳氏试剂分光光 度法 HJ 533-2009	紫外可见分光光度计 L6	0.25 mg/m3
无组织	硫化氢	恶臭污染物排放标 准 GB 14554-93	0.32mg/m³	手工	1次/季	空气质量 硫化氢 甲硫醇 甲硫醚 二甲二硫的测定 气相色谱法 GB/T 14678-93	气相色谱仪	$0.2 \times 10^{-9} \sim 1.0 \times 10^{-9} \text{g}$
	颗粒物	水泥工业大气污染 物排放标准 GB4915-2013	$0.5 \text{mg}/\text{m}^3$	手工	1次/季	环境空气 总悬浮颗粒物的 测定 重量法 GB/T 15432-1995	电子天平 AUW220D(ATI-JC-023)	1.0mg/m ³
厂界 噪声	leq	工业企业厂界噪声 标准 GB12348-2008	昼间 65dB(A) 夜间 55dB(A)	/	1次/季	工业企业厂界噪声标准 GB12348-2008	/	/

监测点位	污染物名称	执行标准	许可排放 限值	监测方 式	监测 频次	监测方法	采样分析仪器	检出限
	COD		/	手工	1次/年	水质 化学需氧量的测定 快速消解分光光度法 HJ/T399-2007	滴定管 50.00mL	4mg/L
III Tak (氨氮		0.50 mg/L	手工	1次/年	生活饮用水标准检验方法 无机非金属指标 GB/T 5750.6-2006 (9.1 纳氏试 剂分光光度法)	紫外可见分光光度计 L6	0.02 mg/L
地下水(厂区地下 水井4个 点)	六价铬	地下水环境质量标准	0.05 mg/L	手工	1次/年	生活饮用水标准检验方法 金属指标 GB/T5750.6-2006(10 二苯 碳酰二肼分光光度法	紫外可见分光光度计 L6	0.004 mg/L
	砷	GB/T14848-2017	0.01 mg/L	手工	1次/年	水质 汞、砷、硒、铋和锑 的测定 原子荧光法 HJ694-2014	双道原子荧光光度计	0.00004mg /L
	铅		0.01 mg/L	手工	1次/年	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ700-2014	电感耦合等离子体质谱 仪 NEXION1000	0.00009 mg/L
地下水(厂区周边 敏感点)	pH 值		6. 5 [~] 8. 5	手工	2次/年	水质 pH 值得测定 玻璃电 极法 GB6920-1986	pH 计 FE-20 型	0.01pH (无量纲)
	COD		/	手工	2次/年	水质 化学需氧量的测定 快速消解分光光度法 HJ/T399-2007	滴定管 50.00mL	4mg/L

监测点位	污染物名称	执行标准	许可排放 限值	监测方 式	监测 频次	监测方法	采样分析仪器	检出限
	高锰酸盐指 数		3.0mg/L	手工	2次/年	生活饮用水标准检验方法 有机物综合指标 GB/T5750.7-2006(1.1 酸性高 锰酸钾滴定法)	滴定管 25.00mL /50.00mL	0.05 mg/L
	氨氮		0.50 mg/L	手工	2次/年	生活饮用水标准检验方法 无 机非金属指标 GB/T 5750.6-2006(9.1 纳氏试剂分 光光度法)	紫外可见分光光度计 L6	0.02 mg/L
III Take (六价铬		0.05 mg/L	手工	2 次/年	生活饮用水标准检验方法 金 属指标 GB/T5750.6-2006(10 二苯碳酰二肼分光光度法	紫外可见分光光度计 L6	0.004 mg/L
地下水(厂区周边敏感点)	氰化物	地下水环境质量标准 GB/T14848-2017	0.05 mg/L	手工	2次/年	生活饮用水标准检验方法 无机非金属指标 (GB/T5750.5-2006(4.1 异烟酸-吡唑分光光度法))	紫外可见分光光度计 L6	0.002 mg/L
	砷		0.01 mg/L	手工	2 次/年	水质 汞、砷、硒、铋和锑的 测定 原子荧光法 HJ694-2014	双道原子荧光光度计	0.00004mg/ L
	铁		0.3 mg/L	手工	2 次/年	《水质 32 种元素的测定 电 感耦合等离子体发射光谱法》 (HJ776-2015)	电感耦合等离子体发 射光谱仪 5110ICP-OES	0.01 mg/L
	锰		0.10 mg/L	手工	2 次/年	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ700-2014	电感耦合等离子体发 射光谱仪 5110ICP-OES	0.00012 mg/L

监测点位	污染物名称	执行标准	许可排放 限值	监测方 式	监测 频次	监测方法	采样分析仪器	检出限
	铅		0.01 mg/L	手工	2次/年	水质 65 种元素的测定 电感耦合等离子体质谱法 HJ700-2014	电感耦合等离子体质谱 仪 NEXION1000	0.00009 mg/L
	汞		0.001 mg/L	手工	2次/年	水质 汞、砷、硒、铋和锑 的测定 原子荧光法 HJ694-2014	双道原子荧光光度计	0.0003 mg/L
	钾		/	手工	2次/年	水质 32 中元素的测定 电		0.07mg/L
	钙		/	手工	2次/年	感耦合等离子体发射光谱 法	电感耦合等离子体发射 光谱仪 5110ICP-0ES	0.02mg/L
地下水(镁	地下水环境质量标准	/	手工	2次/年) G. [[] C	0.02mg/L
厂区周边 敏感点)	碳酸根	GB/T14848-2017	/	手工	2次/年	《水和废水监测分析方法》 (第四版增补版)国家环保 总局(2002 年)第三篇 第 一章 十二(一)酸碱指示 剂滴定法	滴定管 50mL	/
30/Et //// /	碳酸氢根		/	手工	2次/年		滴定管 50mL	/
	氯化物		250 mg/L	手工	2次/年	→ 医 工程四京 7. (□ - C1-	离子色谱仪 CIC-D120	0.007mg/L
	硫酸盐		250 mg/L	手工	2次/年	水质 无极阴离子(F、C1、 NO ₂ 、Br、NO ₃ 、PO ₄ ³ -、SO ₃ ² 、	两 1 巴 宿 仪 CIC-DI20	0.018mg/L
	氟化物		1.0 mg/L	手工	2次/年	SO ₄ ²)的测定 离子色谱法 HJ84-2016	水质 氟化物的测定 离 子选择电极法 HJ694-2014	0.05 mg/L
十掃 / 匚 ▽	pH 值	土壤环境质量 建设 用地土壤污染风险管 控标准 GB36600-2018	/	手工	1次/年	土壤 pH 的测定 电位法 HJ 962-2018	pH 计 FE28	/
土壤(厂区 - 3 个点)	镉		65 mg/kg	手工	1次/年	土壤质量铅、镉的测定 石 墨炉原子吸收分光光度法 GB/T 17141-1997	原子吸收分光光度计 GFA-6880/ AA-6880F/AAC	0.02mg/kg


监测点位	污染物名称	执行标准	许可排放 限值	监测方 式	监测 频次	监测方法	采样分析仪器	检出限																					
	汞	土壤环境质量 建设 用地土壤污染风险管 控标准 GB36600-2018	38mg/kg	手工	1次/年	土壤质量总汞、总砷、总铅 的测定 原子荧光法第 1 部 分: 土壤中总汞的测定 GB/T 22105. 1-2008	双道原子荧光光度计 AFS-8510	0.002 mg/kg																					
	砷										60 mg/kg	手工	1次/年	土壤质量总汞、总砷、总铅的测定 原子荧光法第 2 部分: 土壤中总砷的测定 GB/T 22105. 2-2008	双道原子荧光光度计 AFS-8510	0.01mg/kg													
	铜		18000 mg/kg	手工	1次/年	土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ 491-2019	原子吸收分光光度计 AA-6880F/AAC	2mg/kg																					
土壤(厂区	铅		800 mg/kg	手工	1次/年	土壤质量铅、镉的测定 石 墨炉原子吸收分光光度法 GB/T 17141-1997	原子吸收分光光度计 GFA-6880/ AA-6880F/AAC	0.2mg/kg																					
3个点)	铬		/	手工	1次/年	土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ 491-2019	原子吸收分光光度计 AA-6880F/AAC	7mg/kg																					
	锌						/	手工	1次/年	土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ 491-2019	原子吸收分光光度计 AA-6880F/AAC	4mg/kg																	
	镍																	-						900 mg/kg	手工	1次/年	土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ 491-2019	原子吸收分光光度计 AA-6880F/AAC	5mg/kg
	二噁英				4×10^{-5} ng-TEQ/m ³	手工	1次/年	土壤和沉积物 二噁英的测定 同位素稀释高分辨气相色谱-高分辨质谱法(HJ77.4-2008)	高分辨双聚焦磁式质谱仪 DFS	0.05 ng/kg																			

监测点位	污染物名称	执行标准	许可排放 限值	监测方 式	监测 频次	监测方法	采样分析仪器	检出限			
	pH 值		/	手工	1次/年	土壤 pH 的测定 电位法 HJ 962-2018	pH 计 FE28	/			
	汞					8 mg/kg	手工	1次/年	土壤质量总汞、总砷、总铅 的测定 原子荧光法第1部 分:土壤中总汞的测定 GB/T 22105.1-2008	双道原子荧光光度计 AFS-8510	0.002 mg/kg
	铊		/	手工	1次/年	电感耦合等离子体质谱法 DZ/T 0279.3-2016	电感耦合等离子体质谱 仪 NexION 1000G ZHT/SS-FX-108	0.006mg/k			
土壤(棋盘 村(上风 向)、金盆	镉	土壤环境质量 建设 用地土壤污染风险管 控标准 GB36600-2018		20 mg/kg	手工	1次/年	土壤质量铅、镉的测定 石 墨炉原子吸收分光光度法 GB/T 17141-1997	原子吸收分光光度计 GFA-6880/ AA-6880F/AAC	0.02mg/kg		
村 (下风向))	铅		400 mg/kg	手工	1次/年	土壤质量铅、镉的测定 石 墨炉原子吸收分光光度法 GB/T 17141-1997	原子吸收分光光度计 GFA-6880/ AA-6880F/AAC	0.2mg/kg			
	砷		20 mg/kg	手工	1次/年	土壤质量总汞、总砷、总铅 的测定 原子荧光法第 2 部 分: 土壤中总砷的测定 GB/T 22105. 2-2008	双道原子荧光光度计 AFS-8510	0.01mg/kg			
	铍			15mg/kg	手工	1次/年	电感耦合等离子体质谱法 DZ/T 0279.3-2016	电感耦合等离子体质谱 仪 NexION 1000G ZHT/SS-FX-108	0.003mg/k		
	铬		/	手工	1次/年	土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ 491-2019	原子吸收分光光度计 AA-6880F/AAC	7mg/kg			

监测点位	污染物名称	执行标准	许可排放 限值	监测方 式	监测 频次	监测方法	采样分析仪器	检出限		
	锡	/	/	手工	1次/年	土壤和沉积物 12 种金属元素的测定 王水提取-电感耦合等离子体质谱法 HJ803-2016	电感耦合等离子体质谱仪 NexION 1000	0.08mg/kg		
	锑		180 mg/kg	手工	1 次/年	土壤和沉积物 12 种金属元素的测定 王水提取-电感耦合等离子体质谱法 HJ803-2016	电感耦合等离子体质谱仪 NexION 1000	0.08mg/kg		
土壤(棋盘村(上风	铜		18000 mg/kg	手工	1 次/年	土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ 491-2019	原子吸收分光光度计 AA-6880F/AAC	2mg/kg		
向)、金盆 村(下风 向))	钴	土壤环境质量 建设用地土壤污 染风险管控标准 GB36600-2018	建设用地土壤污 染风险管控标准	70 mg/kg	手工	1次/年	土壤和沉积物 12 种金属元素的测定 王水提取-电感耦合等离子体质谱法 HJ 803-2016	电感耦合等离子体质谱仪 NexION 1000	0.04 mg/kg	
	锰		GB36600-2018	GB36600-2018	/	手工	1次/年	土壤和沉积物 12 种金属元素的测定 王水提取-电感耦合等离子体质谱法 HJ803-2016	电感耦合等离子体质谱仪 NexION 1000G ZHT/SS-FX-108	0.4mg/kg
	镍			900 mg/kg	手工	1次/年	土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ 491-2019	原子吸收分光光度计 AA-6880F/AAC	5mg/kg	
	钒		752 mg/kg	手工	1次/年	土壤和沉积物 12 种金属元	电感耦合等离子体质谱仪	0.4mg/kg		

		素的测定 王水提取-电感	NexION 1000G	
		耦合等离子体质谱法 HJ	ZHT/SS-FX-108	
		803-2016		

附图1 监测点位图

				4-4-	川新 有限			410.4			interior	- Ar Branchaste	- Ar Direc		i me to en
序号	监测点名称	数据类型	高利用	排放型	氧含里	温度	湿度	流性	压力	氨氧化物实测值 (mg/m3)	氯氧化物 折算值	二氧化磷实制值 (mg/m3)	二氧化硫 折算值	乘板物实制值	推算便
1	协同处置宜尾废气(421- EP1)	时数据	2021-08-10 23:00	574568 94	10.532	117.06	2.738	9.062	D-038	286 281	301.216	2.499	1.375	10.389	11 169
2	协同处置宝屋脐气 (42)- EPI)	明神時	2022-08-10 22:00	484774.75	9.865	381 082	5.487	8.299	-0.014	267 448	253.357	38.879	39.592	12.821	12.68
3	物価位置定屋房气(ね1- EPI)	时数据	2022-08-10 21:00	492425.47	9.533	121.12	6,341	8.341	-0.014	736.707	326.313	43.454	44,372	12.679	12.183
+	协同处置宝尾版气(421年 EP1)	时期试图	2023-09-10 20:00	460439.3	9.334	119.382	6 341	8.282	-0,013	TR9.TU1	178 959	30.344	21,731	17.004	12,286
5	协同处置窑尾唐气(421。 EPI)	时前相	2022-08-10 19-00	488113.28	9.719	173.259	5 449	8.201	-0.009	231 745	232.436	26.121	72.413	12.704	12.91
6	物 阿州畫望尾接气 (42)- EP1)	的技术	2022-08-10 19-00	315305.5	10.687	(27.83	9.000	8.972	0 01T	181 466	190,012	14.643	14.101	Lills	11.094
7	物質外置容尾勝气(セ)- EP1)	时數据	2022-08-10 17:00	50611338	9.765	147.005	9.611	9.268	0.019	303,456	300.072	3.60€	3.566	10.756	10:378
8	协同处置宜尾废气 (42)- EPI)	时数据	2022-08-10 16:00	49439512	TD 765	149 188	8987	8.129	8702	399.142	287 739	2.016	1398	10.712	31.311
9	协同处置宝尾脐气(42)- EPI)	ederde	2022-06-10 15-00	510166.25	0.425	347 169	8.87	8,309	0.027	310.365	300.232	27.912	21721	10.814	78.40
10	物阿拉雷雷尾废气(421- 674)	耐熱据	2022-08-10 14:00	349640.1	10.117	120.592	9.235	N. 431	0.048	296.302	100.519	Z.176	1.693	1039	10.71
11	协同处置宝尾康气(42)。 EP1)	日寸素は据	2023-01-11/13:00	578816.1	10.292	109.333	2.64	N 737	0.067	794,437	402.008	Ū	-	9,941	10.216
12	协同处置空尾唐气(421 EPJ)	时割据	2022-08/13 12:00	580910.8	10:226	109 168	9.755	0.743	0.067	271.502	277.387	- 0	-	9_07y	10.211
13	物同位置空屋接气 (42)- EP1)	Bitatio	2022-08-10 11-00	104117	10.166	108.194	8.543	8.909	0.069	279.549	100,112	۵		8.98	40 (11)
14	协同处置窑尾庙气(421- EP1)	时數据	2022-08-10 10:00	3993242	10.479	109.929	9.359	2.051	0.066	290.195	306.49	0	-	10.016	10.439
15	协同处置宜尾版气(421- EP1)	时数据	2022-08-10-09-00	199194 1	10.504	108 282	917	9 03	0.063	789 33.1	xna acc	ž	-	10.236	10.233
16	协同处置宝屋储气 (42)- EPI)	Bists	2022-06-10 08-06	591477-94	10.455	108.259	9.815	8 889	D.064	299.352	512.523	ż	-	10.012	(6) 446
17	物同位置官尾接气(む). 671)	时数据	2023-08-10 07:00	50711:56	90.416	107 299	10'34T	3.963	0.063	275.110	216.941	Ū	v	9,236	10.217
18	协同处置室尾接气(421: EP1)	时表出版	2023-04-11) 08:00	190097-1	10.472	108.862	9.913.	8.648	0.061	260,06	271.977	· o	-	9.692	10.131
10	的同处器窑尾唐气(421 EPJ)	时前据	2022-08-10-05-00	584572.6	10:547	107.64	10 06X	8 782	D-05N	254 85t	208 638	3	-	9.93	10.458
20-	物同处置空尾接气(424- EP1)	的技术技术	2023-08-1/-04-00	182642.06	10.519	(08.058	la m	8 914	9.00	291 251	50E 50a	-9	-	9.885	(04)
21	物質処置宝尾勝气(ゼ)- EP1)	时數据	2022-08-10 05:00	590446.06	10,502	167,967	10,203	H.941	0.657	251,201	210.66	- 9		9 920	10,305
22	协同处置宜尾版气 (421- EPI)	計劃据	2022-08-18-02-00	593558	10 751	109 226	10.053	0 942	0.056	274.201	20114	- 1	-	9.72	10.494
23	协同处置宝屋储气(421- EPI)	B रेक्स से स	2022-08-10-01-00	586911.94	10.575	110.421	19.115	0.018	0.056	275.625	292.446			1.19	10.921

.34	放用处置容易使气(421) 图211	物物值	2022-46-10 00:00	586350,1	19.531	113.948	9,575	8.935	0,051	255,837	269,205	-5		9.507	10.31
15	均可处置容是改气(421- EP1)	1783	2022-08-09 23:00	570064 94	10.709	145,354	7.782	9.239	0.025	276.655	297.602	18	-	10 809	11.351
36	协同处置部署使气 /421-	可放弃	2022-09-09-22:00	480671.47	9.349	10.7117	7145	8,384	-0.057	293,131	278.575	3 159	5 222	12.65%	11,952
27	防衛炎重勢高度等(421- E21)	物物道	2022-08-09 21-00	471336.9	9.095	181.515	1,203	18:22	40.039	303.546	281.167	4616	4.08	12 928	11.977
25	协同处置章星度气 (421- 221)	7.03	2022-08-09 20:00	474693.84	9.585	150.279	7.064	8.214	-0.007	501-565	284.039	5.845	5402	12.725	11948
29	协同处置信息技术 1421- 2011	1703	2032-18-09-19:00	481205.3	9.47	119,583	6.509	8.500	40,068	290,765	273.594	52 (729)	30,595	13.613	(2.043
30	10周处置装毫使气 /421- EF11	打炸店	2022-85-09 15-00	469563 78	9.585	175,875	6.221	8.061	-0.012	156.641	285.844	52,976	50.577	12,506	12 106
31.	特別処置信息使用。(42)。 (271)	村長道	2022-88-09 17:00	473687.66	9,485	178,159	6.253	6.12	-0.01	505.925	298/797	57.534	63,666	12,581	12.049
30	□同企業最高便等 1421- 第211	279.9	2022-08-09 16-00	467398 78	9.065	177.282	6 746	8.025	-0.012	115,651	181.685	15.52	12.29	12.48	11.517
23	世界及董密電度等(421) 第21)	100.0	2022-08-09 15:00	479470.3	9.395	169,219	5.043	7.942	-0,002	272.854	258.333	72,192	65.903	12,133	11.506
34	均可处置容易使气(421- 821)	T this	2022-28-09 14:00	529106.94	9,929	142,014	5 666	8.279	0.005	213.564	210,921	30.852	20.529	10 183	10.074
36	物用处置部高便气 1421。 EZ11	ritis	2022-09-09 13:00	529770.56	9.986	136.281	8.276	8 406	0.041	305.951	31829	3 457	3.562	1/12/5	00.281
36	防御処置衛星度等(421- 221)	100.0	2022-08-09 12-00	381936.6	10 398	107.628	9.948	8 813	0.062	274.452	164-139	1		y tea	5 419
37	协同处置常是读气 1421- EP1.1	行数语	2002-08-09 11:00	585904.5	10.483	106.894	9.805	8.756	0.099	394.048	887.148	14	-	9,348	9771
35	防河炎重要電機で (42)。 EP(1)	1703	2012-18-09 10:09	353552.5	10.204	106,606	9.739	8.765	0.058	971.792	277.856	100		9,668	9.369
39	15同处重装是建气 /421- EP1)	时数据	2022-08-09 09-00	591031 56	10 442	101,041	toata	8,805	+0.039	287.81	179:091	-6-	-	9.542	9 542
40	計画と重要基礎で、(42)。 変表1.1	动数据	2022-08-09 08:00	590631,94	10,494	108,246	9,873	8.862	0.058	183,319	297.21	-0	-	9,432	9.379
41	市馬北重祭高度等 1421- 第211	初始报	2022-08-09 07:00	392881.8	10.562	106.175	9 898	0.883	0.059	269,831	279.573	3	-	9.377	9.9
42.	位用処置館墓皮町(421。 EPI)	RM:	2022-08-09 06:00	596134.5	10.762	106,228	9,524	8.597	0.063	262,145	254.262	-5		9.506	10,232
43	的同处量器電质气 (421-) E21)	和抗菌	2022-28-09-05-00	309377.2	10 415	106.451	0 436	8937	0.058	253.961	267,431	10.	-	9.584	9 990
44	物周处置部尾便气 /421- 四211	可放弃	2022-08-09-04-00	595251 56	10.478	187.256	9.67%	3,968	0.053	269.945	183 43	4		9.547	9 993
45	17 例処置商尾使气(421- 1271)	1703	2022-68-09 bs-00	588605 94	10 304	109(188	10.58	18.81	0.055	260.681	169 119			3 405	9 658
45	10周北重年末使刊 1491- 12917	755	3022-18-09 02:00	585550.05	10.222	980,901	5.972	5.654	0.092	287.54	274.493	q.		9.566	\$757
47	於可此重任高級司(42)。 E217	行根据	2022-08-09 01:00	5557616	10.625	197,463	9,705	5.513	0.065	248.905	255.116	10		9.217	9.799
43	15 可处置自己原气 /421- PF	erace	2002-08-09 00:00	391347.4	10.39	110,215	10.388	8.913	0.05	290.311	363,437	Ja664	1004	9,635	10.607

				华質水泥	(開新) 有	限公司 协	向处置宝瓦	施气(42 2	EP1) 3(1	监测数据					
序号	监测点名称	數据类型	监测时间	排放型	氧含星	温度	聖鹿	東連	压力	氯氧化物实制值 (ntg/m3)	氨氧化物 折算值	二氧化磷实制值 (mg/m3)	二氧化磷 折算值	颗粒物实制值	颗粒物 折草值
1	协同处置常属医气(425 EP1)	时龄据	2022-08-10-24-00	48871175	0.913	176.183	11:241	7.504	-0.054	258.559	250 745	42.006	37.765	12.414	11.296
3	协同处置宝尾属气(410-221)	时数据	2022-08-10 22:00	-41495E 91	H 772	175,342	11.70	7 522	-0.055	266.741	23933	30947	27,412	11 097	9.969
.3	协同处置定度废气(423-227)	日才飲館	2022-08-10 21:00	413049	3,836	177,305	11.13	1,809	4011	313.345	284,615	31,775	29,500	11,029	9,966
14	协同处置宝屋接气 [42] 47(1)	时數据	2022-08-10-2090	409914-03	8.192	179.209	11.479	7.555	-0.05	277 774	252 796	30.723	26941	11.741	10.607
4	协同处置空度信气(423 EP1)	时龄据	2022-08-19 19:00	395746.88	8 054	\$80.787	15.878	7.399	-0.052	2X6.93	245.218	48 134	40_838	11.49%	9.77
6	协同处置军尾尾气(425-EPI)	自由的技术	2002-08-10 18/00	\$90397.84	8.01	30103	12:007	7316	-0.061	341456	190,338	44 520	37.125	112/2	19.487
7	协同处置宝尾语气(422-624)	耐熱調	2022-01/10 17/00	394239.2	7944	182394	12.14	7.211	+0.059	351.36	297,094	56,665	47.201	11/678	9,555
-19	协同处置官尾原气(422EP1)	时数据	2022-09-10 16 00	3800347	1.672	184,748	15316	7.136	-0.017	309.232	159 696	62:059	54.099	11.167	9.334
9	协同处置宝足压气(422-EP1)	BIJANIA	2022-08-10 13:00	175339.03	8 099	180.595	12.007	101	0.055	3).1.537	272,204	51.607	\$2.477	11.584	9 821
10	协同处置国民废气(423-EP1)	时数据	2022-08-10 14:00	383569.06	8 376	176.677	11.366	209	201UL	783 667	317.JAK	19.857	491	TINET	1012
11	协同处置至昆鹿气(423-529)	的熱機	2022-06-10 13:00	378803	5.17	178,356	10.793	6,907	-0.015	349.814	329,901	31 994	80.258	12.129	10.939
14.2	协同处置宝屋居驾(422-591)	耐熱揮	2022-09-10 12:00	172692.62	7,909	176.583	10.444	5.798	-0.03	#14.997	253,190	52 191	10.61	12482	10,493
1.5	协同处置宝屋原气(412-EPI)	时數据	2022-03-10 11:00	189621 03	8 428	175.994	R 364	6.959	-0,05	336.47	199 861	45.578	35.644	12598	11.031
14	协同校置富星度气(421-621)	的動權	2022-08-10 18:00	593749.3	2 799	159.997	11.359	4973	-0.04	295.646	246 142	(996)	Shire	12110	10.633
15	协同处置宝尾废气(40-221)	耐数螨	2022-08-10 09:00	474232,44	9 735	110346	12.408	1343	0.915	276.127	271.600	19.004	(6.0)	11:89	11,739
16	协同处置宝屋接领(422年21)	自由教育官	2022-00-10-09:00	401009-97	9.616	169.035	14.029	1.152	0.016	265.13	285,079	19,013	19,155	\$2.149	11.82
17	协同处置宝屋原气(400-EP1)	助數据	2022-04-10 87400	+93994 77	9-87	107.842	14281	7 822	0.010	209.421	207.585	25.439	19-651	12.500	15972
18	协同处置层度层气(423-591)	时抽相	3002-00-10-04-00	4901A0.78	9,731	107.659	14.892	7.251	n.ozi-	204 196	200 876	27.73	26.697	11,33K	11000
17	协同处置宝属医气(423-EPI)	时數据	2022-06-10 03:00	467734.25	9.511	107,999	14.944	1912	0.015	140.977	197.282	34.453	32.665	11600	11.233
20	协同协置宪民居气(422-201)	的被据	2023-05-10 (4:00	497244.53	9.651	109,455	14,921	7,942	0.011	178.099	172.95	30.958	09,719	11.900	\$1,452
21	协同位置宝屋原气(472-EP1)	时数据	2022-04-10 OH 66	289415.53	9 547	TOWNERS	14.61	7 841	Warte.	623 798	730 594	77 829	150	10.18	411729
22	内间处置宝星房气(412 EP1)	时龄据	2022/08/10 02:00	48610775	E 718	149.186	14 821	7.905	800.0	177.661	111785	39102	101,224	11566	15:278
25	协同处置富尼尼气(430-EPI)	阿披帽	2002-08-10 01:00	49000138	10.023	110.22	14,423	1952	0.012	235.595	The said	27.779	page	11181	3 (239
	the state of the s														

21	协同处置定定压气(422-EP1)	時数据	2022-08-10 00:00	482881 62	10.085	154.178	14.600	7.539	8 306	207.905	212 518	12 (05	12,565	10:291	10.465
15	协同处置窑尾陵气(422-271)	时数据	7/022-95-09 23:00	474833.68	1933	145 (62	12.452	9.017	-n ç36	225.691	247.68	201956	18.095	10.54	10.797
26	协同处置空间接气(422-EP1)	的数据	2022-09-09-22:00	371272.94	7.745	10344	13,115	7.04	47.071	245.946	21//209	58 Oct4	45.939	9.793	4.166
271	协同处置全尾座气(432-EP1)	Bishia	1011-08-09 11:00	367605 88	1317	16105	14.073	7.054	-0.071	194938	180753	61 492	48.978	0.075	8.128
28	协同处置窑间废气(425-191)	阿拉拉提	3022-08-09 29:00	367811.2	1227	179,605	14.657	1.032	-0.07	187.999	18233	13.336	21319	19.57	8.401
29	协同协盟空間康气(422-EP1)	的機構	3022-09-09 19:00	368564.84	1421	STEAR	13.968	9,00,8	6,065	150,124	341,357	14 184 -	59.667	10.525	8:527
30	协向处置全民废气(422-EP1)	时前据	3022-08-09 18:00	179413.38	9.126	171.792	13.086	18.8	-0.068	192.391	151.471	53.415	44.616	11.725	9.661
31	协同处置宗笔废气(422-EP1)	时数据	2022-08-09 17/10	40942178	8.348	138.509	12,354	6.949	200	199 149	719.342	92.303	72.186	11 /01	10.42
.32	协同处置空尾庙气(422-EPI)	耐發掘	3022-06-09 16:00	46036# 62	9.911	1)1 002	14,455	7462	2.604	131.942	131 022	24.029	23.284	10-962	10.785
33-	协同处置空尾接气(422-EP1)	时数据	2022-08-09 15:00	452341.34	9.866	110 218	13.957	7.384	2.000	592.926	192.50	TE 865	12.47	11-091	131179
34	协同处置全民唐气(422-EP1)	耐效摄	2022-08-09 14:00	401115.53	15,003	109.48	13.239	7.365	OHL	231 437	212.439	12 634	12,249	10.504	10,563
.35	协判处置宝星座气(425-201)	射動描	3022-05-09 (3-00	465(Q6 12:	40.1	109.697	12.298	7,403	0.010	229 648	234 739	11.996	73.612	11:217	13.367
.56-	协同处置征属接气(422-EP1)	时前据	2022-09-09 12:00	460272.7	9,979	109.994	13.502	7,489	0.015	225.05	222.532	15.513	14.994	11.103	10.995
37	协同处置全国座气(422-EP1)	state	2022-08-09 11:00	474765.28	19.857	109.881	13.374	7,626	0.014	201:371	223 458	15.25	14,944	11.731	11.798
.38	协同处置宝属废气 (422-2391)	时前措	.2022-08-09 19:00	477930.28	10.269	110.355	13.781	0.695	9911	219367	235787	8.792	27.8	10.661	10.923
39	协同协盟窑尾唐气(422-EP1)	自動物語	2022-09-09-09;00	190915.94	10,327	13E 025	13,714	7,909	0.003	219,669	227,66	13.421	13.663	11.375	11,692
40	协同处置全国废气(422-EPI)	eimis	2022-08-09-08-00	491882.56	10.245	114 721	13 435	1991	0.004	252.W72	259.405	25.716	20,145	10.99	11.269
-41	协同处置富军医气 (422-5191)	时数据	2022-08-09-07-00	438614.5	9.894	138 825	13.928	1.923	10,002	269.953	255 258	32,144	29.076	11/741	11 (09
-12	协同处置空星庙气(422-EP1)	时数据	2022-09-09-06:00	490666.97	10,014	116.507	13,673	7,939	0.001	250.399	229,207	24.982	23.902	11.066	11,115
4.5	协同处置空尾接气(422-EPI)	對數据	2022/08/09 05:00	49651162	1822	106.009	14.503	1942	0.015	190:72	204 031	24 60k	24.019	11.935	12704
iii.	协同处置全尾盾气(422,EP1)	时数据	1011/08/09 D4:00	487982.16	10264	105 907	14.819	7.842	0.0L+	154 L48	159.923	17.822	17/784	10 805	11 083
45	协判处置客尾随气(424年1)	同寸的相當	2022-95-09-03:00	460291-61	10:000	106.219	15.105	7.92	0.014	157,637	16) 156	24785	24313	11-473	11.595
-00	协同处置在尾接气(422-EPI)	別數据	2022-09-09-02:00	495405.56	10.331	106.53	15,000	7.946	0.014	156.136	160,509	19.475	18395	16.933	11.309
-17	协同处置全尾座气(422-3291)	5140亿	2022-08-09 01:50	484793.12	10.155	198,562	15.146	7.851	0.000	151.043	155.17	15 841	25.931	10.029	11.128
48	协同处置富属废气(422-3391)	时前摆	2022-08-09 02 00	4972917	10 3.75	106 745	34,663	8,038	0.985	133.10	161 559	20 561	70 143	11.014	Ta.401

华新水泥(阳新)有限公司水泥窑协同综合利用替代燃料项目 竣工环境保护验收监测报告表验收意见

2023年1月4日,华新水泥(阳新)有限公司根据《华新水泥(阳新)有限公司水泥窑协同综合利用替代燃料项目竣工环境保护验收监测报告表》(以下简称《验收监测报告表》),并对照《建设项目竣工环境保护验收暂行办法》,严格依照国家有关法律法规、建设项目竣工环境保护验收技术规范/指南、本项目环境影响评价报告表和审批部门审批决定等要求对本项目进行验收,提出意见如下:

一、工程建设基本情况

(一)建设地点、规模、主要建设内容

华新水泥(阳新)有限公司水泥窑协同综合利用替代燃料项目位于湖北省黄石市阳新县韦源口华新水泥(阳新)有限公司现有厂区内。项目为技改项目。依托现有5000t/d(一号窑)和4800t/d(二号窑)新型干法回转窑水泥生产线协同处置10万t/a一般固废。项目主要依托现有的RDF储库,以及配套的物料输送设备的环保工程等。

(二)建设过程及环保审批情况

该项目"环评"报告表由中南安全环境技术研究院股份有限公司编制,黄石市生态环境局于2022年1月28日以黄环审函[2022]1号文批复了该项目环境影响报告表。项目于2022年5月开工建设,于2022年7月全部建设完成并试运营。

(三)投资情况

项目实际总投资为200万元,实际环保投资10万元,占总投资的5%。

(四)验收范围

项目验收范围主要包括依托的主体工程及配套辅助工程、公用工程、环保工程等。

二、工程变动情况

表 1 项目主要变更情况说明一览表

主体工程	新型干 法水泥 回转窑 生产线	依托 5000t/d(一号窑)及 4800t/d(二号窑)熟料水泥生线各一条,年处置 100000t 一般废物。	与环评一致	依托
		在 RDF 入窑输送系统基础上改造,增加输送班次及输送容器、扩建入窑设施。经扩建后的投料设施进行投料。	与环评一致	依托
辅助 工程	化验室	在现有水泥厂化验能力的基础上新增实验设备,部分废物的特种检测指标提交社会有资质的专业检测机构化验。形成如下检测能力: (1)物理性质:物理组成、容重、尺寸; (2)工业分析:固定碳、灰分、挥发分、水分、灰熔点、低位热值; (3)元素分析和有害物质含量; (4)特性鉴别(腐蚀性、浸出毒性、急性毒性、易燃易爆性); (5)反应性; (6)相容性。	与环评一致	依托
	应急投 加系统	在窑尾烟室另外设置人工投加口用于临时投加自 行产生或接收量少且不易进行预处理的一般固体 废物。	与环评一致	依托
	供水	用水由现有厂区提供,水质、水压及水量均满足项 目需要。	与环评一致	依托
公用	供电	厂区供电容量满足需求	与环评一致	依托
工程	办公	厂内办公设施	与环评一致	依托
	门卫	利用厂区现有门卫	与环评一致	依托
	地磅	利用厂区现有地磅	与环评一致	依托
	道路	依托厂区现有道路	与环评一致	依托
	窑尾 废气	依托现有水泥窑窑尾烟气除尘系统,复合脱硫 +SNCR 脱硝+布袋除尘,安装在线监测系统,分别 经一根高 80m 排气筒外排。	与环评一致	依托
环保 工程	生产 废水	生产废水回窑处置。	与环评一致	依托
,	生活 废水	送入水泥厂现有生活污水处理站	与环评一致	依托
	固体 废物	窑灰掺入水泥熟料中,生活垃圾收集后交由环卫部 门统一处理;分析化验室危废交由资质单位处理	与环评一致	依托

三、环境保护设施落实情况

表 2 项目环境保护设施落实情况

	产污位			环保设施	
类别	置	污染因子	环评要求	实际建设	落实 情况
		颗粒物	依托现有窑尾烟	依托现有窑尾烟	
废气	一号窑	SO_2	一 气处理系统: 1 套	一 气处理系统: 1	己落实
及し	尾废气	NOx	复合脱硫+SNCR	(文)	口俗头
		NH_3	发 古 肬 训 + SNCK	長 夏百閒伽	

		HCl	脱硝装置+布袋除	+SNCR 脱硝装	
		HF	尘	置+布袋除尘	
		汞及其化合物		80m 烟囱高空排 放	
		铊、镉、铅、砷及其 化合物(以		<i>,,,</i> ,	
		Tl+Cd+Pb+As ††)			
		铍、铬、锡、锑、铜、 钴、锰、镍、钒及化 合物(以			
		Be+Cr+Sn+Sb+Cu+C o+Mn+Ni+V ††)			
		二噁英类			
		颗粒物			
		SO_2			
		NOx			
		NH ₃			
		HCl		依托现有窑尾烟	
	_ ,	HF	依托现有窑尾烟 气处理系统: 1 套	气处理系统: 1 套复合脱硫	
	二号窑 尾废气	汞及其化合物	复合脱硫+SNCR	+SNCR 脱硝装	己落实
	一元及(铊、镉、铅、砷及其	脱硝装置+布袋除	置+布袋除尘	
		化合物(以 Tl+Cd+Pb+As 计)	尘	80m 烟囱高空排 放	
		铍、铬、锡、锑、铜、 钴、锰、镍、钒及化		720	
		合物(以 Be+Cr+Sn+Sb+Cu+C			
		o+Mn+Ni+V 计)			
		二噁英类			
废水	生活 污水	COD、氨氮	1 套厂区生活污水处理系统处理 后回用	1 套厂区生活污水处理系统处理 后回用	己落实
噪声	厂内 设备	噪声	隔声、减振、消 声等综合防治措 施	隔声、减振、 消声等综合防治 措施	己落实
	壤跟踪监	l 取源头防治、过程防控 测;地下水污染防控措	等措施,并开展土 施按照"源头控制、	公司定期开展地	
		、污染监控、应急响应 点、调查评价区和场地		下水和土壤跟踪	
土壤及		点、调查评价区和场地 目可行性研究提出的污		监测;本项目一	口茶点
地下水		出增加或完善的地下水		般固废贮存依托 现有的 RDF 储	己落实
		区各生产、生活功能单 分为重点污染防治区、		存间,为一般防	
		万万里点75条的石区、 治区。对厂区可能泄漏		渗区	
		,可有效防治污染物渗			

	将泄漏 (渗漏)的污染物收集并	进行集中处理		
		生活垃圾	统一收集后交由 环卫部门处置	统一收集后交 由环卫部门处置	己落实
固废	分析化验危废	危废非特定行业其 他废物 HW49 900-047-47	交由资质单位处 理	交由华新环境 工程(武穴)有 限公司进行处置	己落实
生态保护措施		加强厂区绿化		加强厂区绿化	己落实
环境风 险防范 措施	防控体系 污染雨水 做到不影 求,做好 包括环、应	析,本项目设置"三级。将事故状态下泄漏的等均进行收集后进入厂响厂区外环境。同时,突发环境事件应急预时,突发环境事件应急级、组织机急响应、应急保障、并在演练过程中不方式。	物料、消防废水、 区事故应急池内, 项目应按照相关要 编制及演练工作, 构和职责、监控和 后处理、预案管理、	公司已设置"三 级防控"的环境 风险防控体系; 突发环境事件应 急预案已备案	己落实
其他环 境管理 要求	排污口规]范化,设立标志牌,定 测	期对污染源进行监	排污口规范 化,设立标志牌, 按照排污许可证 要求开展排污监 测	己落实

四、环境保护设施调试效果

(1) 废气

监测结果评价:验收监测期间一号窑尾有组织废气颗粒物排放浓度(折算浓度,下同)范围为9.4~10.6mg/m³、二氧化硫排放浓度为1.5mg/m³、氮氧化物排放浓度范围为269~293mg/m³、氨排放浓度范围为1.93~3.86mg/m³;二号窑尾有组织废气颗粒物排放浓度范围为10.6~11.8mg/m³、二氧化硫排放浓度范围为39~54mg/m³、氮氧化物排放浓度范围为268~286mg/m³、氨排放浓度范围为3.70~7.41mg/m³,满足《水泥工业大气污染物排放标准》(GB4915-2013)表2标准要求;

一号窑尾有组织废气氟化氢排放浓度范围为 $0.36\sim0.63$ mg/m³,氯化氢排放浓度范围 $3.77\sim5.71$ mg/m³,汞及其化合物排放浓度 $1.1\times10^4\sim1.9\times10^4$ mg/m³,铊、镉、铅、砷及其化合物排放浓度范围 $7.605\times10^{-3}\sim8.88\times10^{-3}$ mg/m³,铍、铬、锡、锑、铜、钴、锰、镍、钒及其化合物排放浓度范围为 $5.5\times10^{-2}\sim7.7\times10^{-2}$ mg/m³、

二噁英类排放浓度范围为0.017~0.026ngTEQ/m³,二号窑尾有组织废气氟化氢排放浓度范围为0.56~0.93mg/m³,氯化氢排放浓度范围为3.11~8.55mg/m³,汞及其化合物排放浓度范围为1.7× 10^4 ~3.9× 10^4 mg/m³,铊、镉、铅、砷及其化合物排放浓度范围为4.717× 10^3 ~7.805× 10^{-3} mg/m³,铍、铬、锡、锑、铜、钴、锰、镍、钒及其化合物排放浓度为3.310× 10^{-2} ~9.639× 10^{-2} mg/m³、二噁英类排放浓度范围为0.087~0.093ngTEQ/m³,满足《水泥窑协同处置固体废物污染控制标准》(GB30485-2013)表1要求;

一号窑尾有组织硫化氢排放速率范围为0.011~0.018kg/h和臭气浓度范围为417~741;二号窑尾有组织硫化氢排放速率范围为0.016~0.031kg/h和臭气浓度范围为407~741,满足《恶臭污染物排放标准》(GB14554-93)表2要求。

厂界无组织颗粒物下风向与上风向差值最大值为0.101mg/m³、氨排放浓度范围为0.13~0.30mg/m³,满足《水泥工业大气污染物排放标准》(GB 4915-2013)表 3中标准限值;硫化氢排放浓度范围为0.002~0.011mg/m³、臭气排放浓度为<10,满足《恶臭污染物排放标准》(GB 14554-1993)表 1 中新扩改建二级标准要求;非甲烷总烃排放浓度范围为0.035~0.14 mg/m³满足《大气污染物综合排放标准》(GB16297-1996)中表2标准。

(2) 噪声

验收监测期间,厂界四周昼间噪声监测结果范围为 47.6~60.7dB(A),夜间噪声监测结果范围为 45.2~54.3dB(A),均满足《工业企业厂界环境噪声排放标准》(GB12348-2008)表 1 中 3 类标准。

(3) 环境空气

监测结果评价:项目下风向居民点处二氧化硫小时值和日均值、TSP日均值、氮氧化物小时值和日均值、镉日均值、砷日均值、汞日均值、铅日均值、六价铬日均值、氟化物小时值和日均值监测结果均能满足《环境空气质量标准》(GB3095-2012)中二级标准要求;氨小时值、硫化氢小时值、氯化氢小时值和日均值监测结果能满足《环境影响评价技术导则大气环境》(HJ 2.2-2018) 附录 D表 D.1 中相关标准限值;非甲烷总烃小时值监测结果能满足《大气污染物综合排放标准详解》中以色列标准;二噁英日均值监测结果能满足环发[2008]82号文中日本标准要求。

(4) 地下水

监测结果评价:项目厂区上游、厂区内和厂区下游的钠、氯化物、pH、氨氮(以 N 计)、硝酸盐、亚硝酸盐、挥发性酚类(以苯酚计)、氰化物、砷、汞、铬(六价)、总硬度(以 $CaCO_3$ 计)、铅、氟化物、镉、铁、锰、溶解性总固体、耗氧量(COD_{Mn} 法,以 O_2 计)、总大肠菌群、锌、铍、铜、钴、镍监测结果满足《地下水环境质量标准》 (GB/T 14848-2017) III 类标准限值要求。

(5) 土壤

监测结果评价:项目厂区范围内土壤中的汞、镉、铅、砷、铍、锑、铜、钴、镍、钒和二噁英类(总毒性当量)满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地筛选值的标准要求,周边土壤环境敏感点冯坳上和厂区南侧居民点土壤中的汞、镉、铅、砷、铍、锑、铜、钴、镍、钒和二噁英类(总毒性当量)《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第一类用地筛选值的标准要求。

(6) 总量控制

根据国家环境保护部对实施污染物排放总量控制的要求,本项目污染物排放总量控制因子为粉尘、二氧化硫和氮氧化物。

K1窑尾废气粉尘、二氧化硫和氮氧化物排放量分别为48.18t/a、7.64t/a、1368.12t/a,满足排污许可证中烟粉尘90.75t/a、二氧化硫296.22t/a和氮氧化物1452t/a的总量控制指标; K2窑尾废气粉尘、二氧化硫和氮氧化物排放量分别为50.96t/a、210.06t/a、1250.50t/a,满足排污许可证中烟粉尘87.12t/a、二氧化硫284.38t/a和氮氧化物1393.92t/a的总量控制指标。

五、工程建设对环境的影响

本项目基本按照环评及环评批复要求落实了环保措施,监测结果表明废气和 噪声达标排放,对周边环境空气、地表水、声环境影响较小。

六、验收结论

本项目在实施过程中按照建设项目环保"三同时"制度,落实了环评报告表及环评批复中提出的各项要求,验收监测结果表明主要污染物达标排放。在落实后续要求后,该项目具备竣工环境保护验收条件。

七、后续要求

- 1.加强入厂固废的识别与管理、完善危废暂存管理;
- 2.补充验收监测期间 RDF 处置情况;
- 3.补充验收监测期间在线监测数据。

八、验收人员信息

华新水泥(阳新)有限公司水泥窑协同综合利用替代燃料项目竣工环境保护 验收现场验收组成员名单见附件。

> 华新水泥(阳新)有限公司 水泥窑协同综合利用替代燃料项目验收工作组 2023年1月4日

华新水泥(阳新)有限公司水泥窑协同综合利用替代燃料项目 竣工环境保护验收工作组签到表

	姓名	职务/职称	单位	联系电话
	Vanu	教授	一过227年大学	13995659664
专家组	るかし	toz	弘江村地展本本的华	,3037106161
	弘安東	南	就28次之环保	1592/2/462)
	Jz	好物人	经外水泥(分野)有限公司	138/20/6921
建设单位	有强	弘保等班	年到此死(训练) 有晚后司	18871419336
设计单位	李雄	克废工程序	华斯 环境 工程有限公司	1827169176)
	主动松	1推师	华村南(武汉) 松鲜村新	祖司 18672966273
验收单位	AD0209	242.14	学场本面(成12×2/各级有限公	7 1869622819
参会				
少云 人员				
			RA discort	司 2022年1日4

验收时间: 2023年1月4日